Subject: creating a 2D mask for image filtering Posted by David Higgins on Wed, 17 Aug 2011 10:47:20 GMT

View Forum Message <> Reply to Message

Hi all

I need to create a 2D mask to filter data in the frequency domain (apodization). I would like to leave 0.8 of the centre-to-edge of the data untouched (i.e. a circle of untouched data), and then a Hanning-type shape to smooth down to zero at the edges. (Think of an upside-down frying pan, kinda.) I can apply a Hanning filter with

```
apod_fn = HANNING(kx_res, ky_res, alpha=0.5)
```

but of course the centre area which I would like to have untouched doesn't exist, and the filter is too aggressive. I'd go without the Hanning shape requirement if I could get more-or-less the right shape. I see also DIGITAL_FILTER, but can't seem to widen the filter with my changes to it's arguments.

Thanks for any pointers.

Subject: Re: creating a 2D mask for image filtering Posted by David Fanning on Wed, 17 Aug 2011 17:44:58 GMT

View Forum Message <> Reply to Message

Dave Higgins writes:

```
> Thanks for the advice, very much appreciated. I followed your general method as follows, but actually it's not the filter shape I want:
> FUNCTION CIRCLE, xcenter, ycenter, radius
> points = (2 * !PI / 99.0) * FINDGEN(100)
> x = xcenter + radius * COS(points )
> y = ycenter + radius * SIN(points )
> RETURN, TRANSPOSE([[x],[y]])
> END
```

> PRO apod filter

- > image = dist(512)
- > WINDOW, 0, TITLE = 'Test data before filtering'
- > SHADE_SURF, image
- > s = Size(image, /Dimensions)
- \rightarrow hf = Hanning(s[0], s[1], ALPHA=0.5)
- > maxRadius = Min(s)/2;
- > WINDOW, 1, TITLE = 'temporary window', xsize=s[0], ysize=s[1]

- ; Use of data coords for "circle" ok since data extent may not be square >
- POLYFILL, CIRCLE(s[0]/2-1, s[1]/2-1, 0.8*maxRadius), color=1 >
- circleMask = TVRD() >
- WDELETE, 1 >
- indices = Where(circleMask EQ 1) >
- hf[indices] = 1>
- WINDOW, 2, TITLE = 'Filter to be applied' >
- SHADE_SURF, hf >
- WINDOW, 3, TITLE = 'Apodized image' >
- SHADE SURF, hf*image >
- > WDELETE, 0, 3
- > END

>

- > This produces a step down at the edge of the circle, to where the Hanning window was before the circleMask was applied. But this step-down causes Gibbs ringing in a FT of the data.
- > I was aiming for a smooth "S" shaped (or similar) reduction of the filter values from the edge of the circle to the edge of the data.
- > I was wondering if I applied some sort of smoothing to circleMask, it would blur the edge of the circle and achieve the smooth decent at the circle edge:

```
> PRO apod filter
```

- image = dist(512)>
- WINDOW, 0, TITLE = 'Test data before filtering' >
- SHADE_SURF, image >
- s = Size(image, /Dimensions) >
- maxRadius = Min(s)/2: >
- WINDOW, 1, TITLE = 'temporary window', xsize=s[0], ysize=s[1] >
- ; Use of data coords for "circle" ok since data extent may not be square >
- POLYFILL, CIRCLE(s[0]/2-1, s[1]/2-1, 0.8*maxRadius), color=1 >
- circleMask = float(TVRD()) >
- WDELETE, 1
- help, circlemask >
- circleMask = SMOOTH(circleMask, 100, /EDGE_TRUNCATE, MISSING=0.0) >
- indices = Where(circleMask GT 0.01) >
- filter = fltarr(s[0], s[1])>
- filter[indices] = circleMask[indices] >
- WINDOW, 2, TITLE = 'Filter to be applied' >
- SHADE SURF, filter >
- WINDOW, 3, TITLE = 'Apodized image' >
- SHADE_SURF, filter*image >
- WDELETE, 0, 3 >
- > END

> ...but this smoothing eats back into my leave-it-alone circle of data; I'd like to start the descent to zero at the edge of the originally defined circleMask.

> Thanks for any further help.

Aren't you smoothing the wrong thing? I think you want this:

```
PRO apod_filter
  image = dist(512)
  WINDOW, 0, TITLE = 'Test data before filtering'
  SHADE_SURF, image
  s = Size(image, /Dimensions)
  hf = Hanning(s[0], s[1], ALPHA=0.5)
  maxRadius = Min(s)/2;
  WINDOW, 1, TITLE = 'temporary window', xsize=s[0], ysize=s[1]
  POLYFILL, CIRCLE(s[0]/2-1, s[1]/2-1, 0.8*maxRadius), color=1
  circleMask = TVRD()
  WDELETE, 1
  indices = Where(circleMask EQ 1)
  hf[indices] = 1
  WINDOW, 2, TITLE = 'Filter to be applied'
  SHADE SURF, Smooth(hf, 50, /edge truncate)
  WDELETE, 0
END
Also, TVCircle (from the Astronomy Library) will produce
a real circle no matter what the aspect ratio of the window.
One of the reasons it's one of my favorite programs. :-)
Cheers.
David
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")
```

Subject: Re: creating a 2D mask for image filtering Posted by David Higgins on Thu, 18 Aug 2011 14:28:24 GMT View Forum Message <> Reply to Message

Ah, yes, that is definitely better. The step-down is still smoothed out, but with better preservation of the central to-be-left-alone section.

I had another idea, which was to plot concentric circles as seen in http://www.idlcoyote.com/tips/make_circle.html to approximate the filter shape a little better before smoothing, with the result that the smoothing needn't be as aggressive, and the central section is even better preserved.

```
PRO apod filter
  SET PLOT, 'WIN'
  image = DIST(512)
  WINDOW, 0, TITLE = 'Test data before filtering'
  SHADE_SURF, image
  siz = SIZE(image, /DIMENSIONS)
  minRadius = MIN(siz)/2;
  thisDevice = !D.Name
  SET PLOT, 'Z'
  DEVICE, SET RESOLUTION=siz
  ERASE, COLOR=0
  ; 20-point Hanning-shape step-down from the edge of minRadius,
  ; using concentric circles, starting at 0.8*minRadius, to zero at minRadius
  steps = REVERSE(FINDGEN(20))
  filter width = 0.8
  radius_frac = filter_width + steps*((1-filter_width)/N_ELEMENTS(steps))
  gap idx = (minRadius/2*(1-(radius frac-filter width))/(1-filter width)))
  Hanning shape colorvals = FIX(100* (0.5*(1-cos((2*!PI*gap_idx)/minRadius)))))
  FOR i=0,N ELEMENTS(Hanning shape colorvals)-1 DO BEGIN
    points = (2*!PI/99.0)*FINDGEN(100)
    x c = siz[0]/2-1 + FIX(ROUND(radius_frac[i]*minRadius)) * COS(points)
    y c = siz[1]/2-1 + FIX(ROUND(radius frac[i]*minRadius)) * SIN(points)
    circ = TRANSPOSE([[x_c],[y_c]])
    POLYFILL, circ, color=Hanning_shape_colorvals[i]
    ; Possible problem with ellipses instead of a circle; dependent on image
    ; aspect ratio, see http://www.idlcoyote.com/tips/make_circle.html
  ENDFOR
  filter = smooth(float(TVRD())/100, 10, /EDGE_TRUNCATE)
  SET PLOT, this Device
  WINDOW, 3, TITLE = 'Filter to be applied'
  SHADE_SURF, filter
  WINDOW, 4, TITLE = 'Filtered image'
  SHADE SURF, filter*image
END
```

I see your point about TVCircle to keep circles circular. Thanks. I'll look into that next.

Subject: Re: creating a 2D mask for image filtering Posted by David Fanning on Thu, 18 Aug 2011 14:37:35 GMT View Forum Message <> Reply to Message

Dave Higgins writes:

> Ah, yes, that is definitely better. The step-down is still smoothed out, but with better

preservation of the central to-be-left-alone section.

>

- > I had another idea, which was to plot concentric circles as seen in
- > http://www.idlcoyote.com/tips/make_circle.html
- > to approximate the filter shape a little better before smoothing, with the result that the smoothing needn't be as aggressive, and the central section is even better preserved.

And, you realize that this:

SHADE SURF, filter*image

Is NOT how you apply this filter to an image, right?

The Hanning filter is a frequency domain filter and it should be applied to the frequency image created with the FFT function.

Since you were talking about "ringing" yesterday, I thought you understood this, but this is the second time I've seen a plot with "Filtered Image" as a title and the *incorrect* filtered image. :-)

Cheers.

David

David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thui. ("Perhaps thou speakest truth.")

Subject: Re: creating a 2D mask for image filtering Posted by David Higgins on Thu, 18 Aug 2011 14:50:18 GMT View Forum Message <> Reply to Message

Yes, you're right of course.

I am actually already working in the frequency domain, but have named my test data set badly!

image = DIST(512)
ought to have been defined
test_k_data = DIST(512)

and so on from there.

Subject: Re: creating a 2D mask for image filtering Posted by orifox2003 on Wed, 20 Feb 2013 19:26:32 GMT View Forum Message <> Reply to Message

On Thursday, 18 August 2011 10:50:18 UTC-4, Dave Higgins wrote:

- > Yes, you're right of course.
- > I am actually already working in the frequency domain, but have named my test data set badly!

>

- > image = DIST(512)
- > ought to have been defined
- > test k data = DIST(512)

>

> and so on from there.

> _

> Dave Higgins

Hi guys,

Not sure if this post is still active, but I have a couple follow-up questions. I'm trying to deconvolve an astronomical image by the telescope's PSF (PSF_tele) and then convolve by a gaussian (PSF_gauss). This is all done in fourier space, so the code looks something like this:

```
xx = fft(psf_guass)
yy = fft(psf_tele)
fftratio=xx/yy
s = Size(fftratio, /Dimensions)
hf = Hanning(s[0], s[1], ALPHA=0.5)
maxRadius = Min(s)/2
TVCircle, maxRadius*0.8, s[0]/2-1., s[1]/2-1., COLOR=1, /FILL
circleMask = TVRD()
indices = Where(circleMask EQ 1)
hf[indices] = 1
hf=smooth(hf,50,/edge_truncate)
kernel = fft(xx/yy*hf,/inverse)
```

The problem is that the resulting image has significant ringing to it. I will try to attach some images of the original PSF's and resulting image below. The images are named accordingly.

/Users/ofox/Desktop/before_after.jpg /Users/ofox/Desktop/xx_divide_yy_times_hfilter.tiff /Users/ofox/Desktop/hfilter.tiff /Users/ofox/Desktop/xx_divide_yy.tiff

Thanks.

```
Subject: Re: creating a 2D mask for image filtering Posted by orifox2003 on Wed, 20 Feb 2013 19:30:45 GMT View Forum Message <> Reply to Message
```

```
On Wednesday, 20 February 2013 14:26:32 UTC-5, orifo...@gmail.com wrote:
> On Thursday, 18 August 2011 10:50:18 UTC-4, Dave Higgins wrote:
>> Yes, you're right of course.
>> I am actually already working in the frequency domain, but have named my test data set
badly!
>
>>
>> image = DIST(512)
>> ought to have been defined
>> test_k_data = DIST(512)
>>
>> and so on from there.
>>
>
>> Dave Higgins
>
>
  Hi guys,
>
>
  Not sure if this post is still active, but I have a couple follow-up questions.
> I'm trying to deconvolve an astronomical image by the telescope's PSF (PSF_tele) and then
convolve by a gaussian (PSF gauss). This is all done in fourier space, so the code looks
something like this:
>
  xx = fft(psf_quass)
> yy = fft(psf_tele)
```

```
fftratio=xx/yy
  s = Size(fftratio, /Dimensions)
  hf = Hanning(s[0], s[1], ALPHA=0.5)
  maxRadius = Min(s)/2
>
  TVCircle, maxRadius*0.8, s[0]/2-1., s[1]/2-1., COLOR=1, /FILL
>
  circleMask = TVRD()
  indices = Where(circleMask EQ 1)
  hf[indices] = 1
>
  hf=smooth(hf,50,/edge_truncate)
  kernel = fft(xx/yy*hf,/inverse)
>
>
  The problem is that the resulting image has significant ringing to it. I will try to attach some
images of the original PSF's and resulting image below. The images are named accordingly.
>
>
  /Users/ofox/Desktop/before_after.jpg
  /Users/ofox/Desktop/xx_divide_yy_times_hfilter.tiff
>
  /Users/ofox/Desktop/hfilter.tiff
>
  /Users/ofox/Desktop/xx_divide_yy.tiff
>
>
  Thanks,
> Ori
```

Sorry, no success with adding the pictures. Doesn't seem to work.