Subject: Vector output of idlgrpolygon models
Posted by D D on Tue, 08 Nov 2011 14:22:53 GMT

View Forum Message <> Reply to Message

Hi,

For a large document I'm currently writing | have the need to make
several 3D diagrams. As my drawing skills aren't up to much | thought
why not use IDL to generate the models programmatically, draw them in
3d and then save them to a postscript file or similar.

[For the question without context skip to >>>>>> below!]

The first part was fine and | generated some nice object graphics
based models. Then came the problem, how do | save these in a vector
format?

| played around with the idlgrclipboard and idlgrprinter objects.

Using the printer object idlgrprinter | can produce vector files but

only in black and white (i'm on unix based machines so IDL uses the
xprinter system) and i'm not sure how to add another printer to do

this in colour. | found that | could make colour vector files easily

with idIgrclipboard however this is suboptimal. The vector files
produced draw ALL polygons whether they are visible from the current
view or not. This results in rather large postscript files meaning |

can't use them as my final document would be too large.

Finally at work I've got access to idl v8.0, this brings the idlgrpdf
output object so | thought i'd give that a go. This looked like my
solution as the vector pdf's produced are small in size and full

colour. Unfortunately there appear to be several polygons missing in
the output, looking carefully it appears that for a few points

polygons in the background are being drawn on top of the foreground

polys.

It looks like postscript output via idigrclipboard is my best bet if |

can turn off polygons that aren't seen. | guess this reduces to a
problem of vector plane intersection (albeit in a rather large loop)
where | toggle the HIDE property based on number of intersections > 0
>>>> >>>>>>>>>> S0 here's my question:

Is there a simple way to get idl to remove/hide all polygons which
can't be seen in the current view? | realise with modern hardware this
is often not time efficient (i.e. takes longer to check if a poly can

be seen then it does to just draw it anyway) so may not be built in

but in my case (writing to a file) the one off cost of checking for
hidden polygons is worth it for significant file size reduction.

Some alternative/intermediate questions:

Page 1 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7445
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33247&goto=78273#msg_78273
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78273
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

i) Is there a routine anywhere to check if a polyline/vector
intersects with a polygon object?

i) Am | missing an obvious solution (which doesn't just save the
figure in a raster format).

iii) A better question may be how to fix the pdf output/is this a
known issue?

Iv) In order to draw a polyline to intersect with a polygon |
need two points, one is the point of interest. | guess the second is
the eye position, is this correct? Where is the eye position? What
about the different projection types?

If it helps with context the particular figure I'm working with

involves ten nested toroidal surfaces with varying extent in toroidal
angle. For this region a significant number of polygons can be hidden
from view at a time.

Apologies for the rambling nature of this post, if any clarification
is needed then please let me know.

Many thanks for any help!

Subject: Re: Vector output of idlgrpolygon models
Posted by D D on Wed, 09 Nov 2011 13:30:23 GMT

View Forum Message <> Reply to Message

On Nov 8, 7:58 pm, D D <d19997919j...@gmail.com> wrote:

> On Nov 8, 5:13 pm, Karl <Karl.W.Schu...@gmail.com> wrote:

>

>> You might try looking at the REJECT property in IDLgrPolygon. If your surfaces are defined
correctly so that the normals are correct, REJECT can be set to prevent drawing the polygons that
face away from the viewer. This might reduce the number of unwanted polygons you are
dealing with.

>

>> Also might look at the VECT_SORTING keyword in IDLgrClipBoard::Draw(). Graphics
hardware uses Z-buffers to take care of the hidden surface removal problem. The clipboard
doesn't have such hardware and does coarse-grained sorting of the objects based on their depth
instead. | can't remember if it uses the average Z of the entire IDLgrPolygon object, or the
average Z of each triangle making up the polygon. If the latter is true, then that level of
resolution may be good enough to sort out your surfaces. There will likely be problems where
the toroids intersect, so look carefully there. The clipboard object won't split up intersecting
triangles and draw just the visible pieces.

>

>> A more robust solution would be to use a BSP tree to sort them out and take care of splitting
intersecting faces, but that is a lot of work.

>

> | activate hardware rendering by default on my draw widgets, IDL then

> sets them to software if the machine doesn't have suitable hardware.

Page 2 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7445
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33247&goto=78345#msg_78345
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78345
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVYVVYVYVYVYVYV

Indeed | would have thought that the hardware to file comparison would
be the most likely place for a difference to occur.

As most of my surfaces aren't closed setting the REJECT keyword to
anything other than 0 means | lose half of my surface. Additionally
many of the "hidden" polygons will have normals pointing towards (or
away from) the camera. It's a shame because at first | thought REJECT
was what | was after. It is an option if | enforce a fixed viewpoint

but this is not great.

VECT_SORTING again looks useful but only alters the order items are
drawn, not if they are drawn.

Currently | draw my surfaces as a single polygon object, | have tested
splitting each surface into the individual polygons and redrawing.
This makes the visualisation and manipulation a fair bit slower but
still doesn't allow automated hidden object removal with vect_sorting
or reject.

One (probably idiotic) thought i've just had is if it's possible for a
user to click in the window to select a polygon (i.e. IDL can take an
x-y position and tell you what you've clicked on) then you could
technically click every polygon you can see and mark it, then once
you've covered the screen toggle all the unmarked polygons HIDE
property. How you would go about this in practice i'm not sure,
moreover I'd guess this is likely to take a considerable amount of
time if one were to scan over the full window at the smallest
resolution. I'm sure some optimisation could be made but this still
sounds like it's probably not a good way to go (if it's even
possible).

Any other suggestions would be much appreciated but | think it looks
like there's no simple way to achieve this. It will either involve

writing a routine, putting up with large files or invoking an external
tool (i'm trying hidden object removal with CorelDraw at the moment
but it doesn't like the number of objects I think).

Thanks,
David

(Going slightly off topic [well off IDL anyway] : Searching for a
solution to this | came across the C library GL2PS which apparently
does this hidden object removal and is a routine for creating
Postscript files from opengl commands. As | have little knowledge of
opengl and no knowledge of C i've not got anywhere with it but it
would certainly could form a nice output object! There is optional
support for it in Paraview [which can read vrml] so this is one
possible route.)

Page 3 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Sorry to double post but | just thought I'd post my current "solution”
for anyone who searches these groups in the future.

My idea of using the select routine turns out to not be too idiotic
after all. The window object contains the method select which you
provide with a view or scene and an x-y position on the display, it
then returns you an ordered list of object reference to all the
objects (depending on if you pass a view or scene you get different
objects) which exist at that point, ordered by distance from viewer.
So it is possible to loop over the x-y values corresponding to the
window dimensions and build up a list of all objects which are at the
front at a certain point.

Without any effort a brute force approach is to simply sample every
pixel and keep a list of all polygons which appear at the front at

least once. The polygons not in the list can then be hidden/deleted
leaving just the visible polys! The downside of this is it can be

quite slow. First of all the simple way | have coded it involves

nested loops (with an if statement in the inner loop :S) which tend

not to be so good. Secondly | believe to work effectively each polygon
needs to represented by an individual polygon object which can be
painful to manipulate.

There is however scope for optimisation, other than improving the code
structure one can also think of taking an image of the view and
producing a mask where the pixel colour is equal to the background
colour and treating these positions as ignorable in the subsequent
select scan.

Some example code is given below if it's of use to anyone.

Thanks for all the help,
David

FUNCTION CULL,WIND,VIEW,STEP

;Wind : window object reference to scan
;view : View object referenc containing items of interest
;Step : Number of pixels to step over, defaults to 3

IF N_ELEMENTS(WIND) EQ 0 THEN BEGIN
PRINT,"ERROR: Must pass wind and view."
RETURN,-1

ENDIF

IF N_ELEMENTS(VIEW) EQ 0 THEN BEGIN
PRINT,"ERROR: Must pass wind and view."

Page 4 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

RETURN,-1
ENDIF

IF N_ELEMENTS(STEP) EQ O THEN STEP=3

:Probe wind
wind->GetProperty, DIMENSIONS=DIM

:Make object array
OBJ=0OBJARR(DIM)

;Calculate number of points in each direction
DIM2=FIX(DIM/STEP)

;Get total number of points
NPTS=(DIM2[0]*1L)*(DIM2[1]*1L)

;Print message about size

PRINT,"Window has dimensions "+STRING(DIM[0],'(10)")+" by
"+STRING(DIM[1],'(10)")

PRINT,"With a step size of "+STRING(STEP,'(10)")

PRINT,"This corresponds to a grid of "+STRING(DIMZ2[0],'(10)")+" by
"+STRING(DIM2[1],'(10)")

PRINT,"Which is "+STRING(NPTS,'(10)")+" points."

:Get current time
s1=SYSTIME(/SECONDS)

:Initialise counter
CT=0L
tav=0L

:Define format
form='($,a,a,a,a,a)’

FOR k=0,DIM[0]-1,STEP DO BEGIN
FOR |1=0,DIM[1]-1,STEP DO BEGIN
:Get time
t1=SYSTIME(/SECONDS)

;Update counter
CT=CT+1L

;Print counter message
;Form position
pos=[k,l]

Page 5 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

;Get selection
sel=wind->Select(view,pos)

;Check selection is not empty

IF OBJ_VALID(sel[0]) NE 0 THEN BEGIN
obj[k,l]=sel[0]

ENDIF

:Get time
t2=SYSTIME(/SECONDS)

;Calculate average time
tav=(tav*(CT-1L)+(t2-t1))/CT

:Make report message

MESG="Time for loop : "+STRING(t2-t1,'(I0))+" s " ;Probably
reads as zero

MESG=MESG+" Time remaining ~ "+STRING((NPTS-CT)*tav,'(F8.2)")
+" g"

;Update counter display
PRINT,
form=form,MESG,STRING(CT,'(10)"),"of",STRING(NPTS,'(10)"),STRING("15b)
ENDFOR
ENDFOR

:Get final time
s2=SYSTIME(/SECONDS)

;Print total time
PRINT,"Total time taken : "+STRING(s1-s2,'(10)")

;Return object array
RETURN,0bj

END

Subject: Re: Vector output of idlgrpolygon models
Posted by Karl[1] on Wed, 09 Nov 2011 17:27:49 GMT

View Forum Message <> Reply to Message

| was going to point out that Select could be called for each pixel, but you figured that out :-).
But | also didn't point that out because | still don't think it is a perfect solution.

Did you actually send the resulting polygon list to vector output and inspect the results? | think

Page 6 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5533
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33247&goto=78341#msg_78341
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78341
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

that rendering the resulting polygon list to the display would look pretty good, since you're getting
help from the depth buffer. But that won't be the case on a vector device.

If two of your surfaces (toroids) intersect, there are going to be some faces that intersect with
each other.

EYE

Your algorithm would (correctly) select both surfaces and put them both in the list to send to the
vector device. That device is going to render then both in the order you supply them and you'll
see one surface or the other near the intersection. The part of the second surface to draw that is
behind the first drawn surface will draw on top of the first surface, which is incorrect.

But perhaps your data does not do this and you may be fine.

The GL2PS approach is very interesting. It uses the same technique that the IDL Clipboard uses
(OpenGL Feedback buffer) and sorts things in a similar way if you pick the simple sort option. |
had also mentioned using BSP trees and | note that GL2PS offers a BSP tree sort option. This
would address the problem I illustrated above with the intersecting surfaces. These two surfaces
would each be split at the intersection line, resulting in four surfaces. The two "back" pieces
would not be in the remaining list and would not draw, leaving the two "front" pieces to represent
the correct rendering of the intersection. Might still be worth a look if you need this sort of
precision.

Subject: Re: Vector output of idlgrpolygon models
Posted by D D on Wed, 09 Nov 2011 19:28:12 GMT

View Forum Message <> Reply to Message

On Nov 9, 5:27 pm, Karl <Karl.W.Schu...@gmail.com> wrote:
| was going to point out that Select could be called for each pixel, but you figured that out :-).

>
>
> But | also didn't point that out because | still don't think it is a perfect solution.
>
>

Did you actually send the resulting polygon list to vector output and inspect the results? |
think that rendering the resulting polygon list to the display would look pretty good, since you're
getting help from the depth buffer. But that won't be the case on a vector device.
>

Page 7 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7445
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33247&goto=78339#msg_78339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> |If two of your surfaces (toroids) intersect, there are going to be some faces that intersect with
each other.

EYE

VVVVVVVYVYVYVYVYVYV
-
~~

> Your algorithm would (correctly) select both surfaces and put them both in the list to send to the
vector device. That device is going to render then both in the order you supply them and you'll
see one surface or the other near the intersection. The part of the second surface to draw that is
behind the first drawn surface will draw on top of the first surface, which is incorrect.

>

> But perhaps your data does not do this and you may be fine.

>

> The GL2PS approach is very interesting. It uses the same technique that the IDL Clipboard
uses (OpenGL Feedback buffer) and sorts things in a similar way if you pick the simple sort
option. | had also mentioned using BSP trees and | note that GL2PS offers a BSP tree sort
option. This would address the problem [illustrated above with the intersecting surfaces.

These two surfaces would each be split at the intersection line, resulting in four surfaces. The
two "back" pieces would not be in the remaining list and would not draw, leaving the two "front"
pieces to represent the correct rendering of the intersection. Might still be worth a look if you
need this sort of precision.

I've sent a couple of preliminary attempts to vector output and things
do seem to work quite well (the file size decreased by an order of
magnitude, and then some!) however | need to tweak my settings a bit |
think as currently things are a bit over excited and throw away a few
more polygons than needed. This should be solvable at the expense of
more cpu time.

One puzzle i'm having is to why the execution time of the function |
gave previously varies by an order of magnitude between machines. It's
possible my setup is at fault: one machine is a fedora box with

software rendering whilst the other is a virtual machine running

lubuntu on top of vista using hardware graphics. The virtual machine

is much slower for this (although much more responsive when
interacting with the widget plot).

GL2PS does indeed look interesting, i'd got 80% of the way to

Page 8 of 9 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

compiling Paraview with GL2PS support enabled when | ran out of disk
space :S

| think a BSP tree type approach would be interesting, and certainly a
good project for me to try sometime but for now I'll stick with the

Select method as | can't afford the time (the long document I'm

writing is my thesis so trying to keep distractions to a minimum but

this IDL challenge keeps nagging at me!)

Thanks,
David

Subject: Re: Vector output of idlgrpolygon models
Posted by penteado on Mon, 21 Nov 2011 22:35:54 GMT

View Forum Message <> Reply to Message

| meant "problems with software rendering". Though there are plenty
with hardware rendering as well.

On Nov 21, 8:30 pm, Paulo Penteado <pp.pente...@gmail.com> wrote:
| do remember an article mentioning some problems with hardware
rendering:

There was a problem with PS drawing order, logged years ago as CR ID

>
>
>
> http://www.idlcoyote.com/ng_tips/render.php
>
>
> 51003.

Page 9 of 9 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33247&goto=78503#msg_78503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78503
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

