Subject: Re: faster convol on local subsets?
Posted by ben.bighair on Mon, 05 Dec 2011 01:19:13 GMT

View Forum Message <> Reply to Message

On Dec 4, 7:37 pm, Andre <note....@gmail.com> wrote:

> Hello experts,

>

> Maybe somebody has an easy solution for this?

> | have a 2D array (img) and want the filter response from kernels that vary according to the
image position. In a second array (loc, same dimensions as img) | have the information which
kernel should be used at each pixel. My current approach is to first convolve the full image with
the j-th kernel and take the response only at the positions with the current j indexed in the loc
array:

for j=0, n do begin
kernel=kernel_store[*,*,]]
response_temp = convol(img, kernel, /edge_zero, /NAN)
index=where(loc eq j)
if (index[0] gt -1)then response[index]=response_temp[index]
endfor

VVVVYVYVYV

>
> | works fine, but it is relatively slow and | wonder if there is a smarter (faster) to apply only the
convolutions that are really needed?

>

> Thanks in advance for any help!

Hi,

Since the value of loc doesn't change, you might try precomputing the

values of index in loc for each step, j. That would save a two full

scans of you loc array at each iteration (one for loc eq j and one for

WHERE). Instead, use HISTOGRAM with its REVERSE_INDICES to get them
sorted and tagged. Then for each iteration step use David Fanning's
REVERSEINDICES to grab the correct indices in loc.

So, it might look like...
locHist = HISTOGRAM(loc, min = 0, REVERSE_INDICES = ri)

for j=0, n do begin
kernel=kernel_store[*,*,j]
response_temp = convol(img, kernel, /edge_zero, /NAN)
index = REVERSEINDICES(ri, j, COUNT =
count)
if (count GT 0)then response[index]=response_temp[index]
endfor

Cheers,

Page 1 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33348&goto=78632#msg_78632
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78632
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Ben

http://www.idlcoyote.com/programs/reverseindices.pro

Subject: Re: faster convol on local subsets?
Posted by Jeremy Bailin on Mon, 05 Dec 2011 03:02:43 GMT

View Forum Message <> Reply to Message

On 12/4/11 8:19 PM, ben.bighair wrote:

> On Dec 4, 7:37 pm, Andre<note....@gmail.com> wrote:

>> Hello experts,

>>

>> Maybe somebody has an easy solution for this?

>> | have a 2D array (img) and want the filter response from kernels that vary according to the
image position. In a second array (loc, same dimensions as img) | have the information which
kernel should be used at each pixel. My current approach is to first convolve the full image with
the j-th kernel and take the response only at the positions with the current j indexed in the loc

array:
>>

>> for j=0, n do begin

>> kernel=kernel_store[*,* j]

>> response_temp = convol(img, kernel, /edge_zero, /NAN)

>> index=where(loc eq)

>> if (index[0] gt -1)then response[index]=response_temp[index]
>> endfor

>>

>> | works fine, but it is relatively slow and | wonder if there is a smarter (faster) to apply only the
convolutions that are really needed?
>>

>> Thanks in advance for any help!
Hi,

Since the value of loc doesn't change, you might try precomputing the

values of index in loc for each step, j. That would save a two full

scans of you loc array at each iteration (one for loc eq j and one for

WHERE). Instead, use HISTOGRAM with its REVERSE_INDICES to get them
sorted and tagged. Then for each iteration step use David Fanning's
REVERSEINDICES to grab the correct indices in loc.

So, it might look like...

locHist = HISTOGRAM(loc, min = 0, REVERSE_INDICES = ri)

VVVVVVVVVYVVYVYVYVYV

for j=0, n do begin

Page 2 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33348&goto=78631#msg_78631
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78631
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

http://www.idlcoyote.com/programs/reverseindices.pro

> kernel=kernel_store[*,*,j]

> response_temp = convol(img, kernel, /edge_zero, /NAN)
> index = REVERSEINDICES(ri, j, COUNT =

> count)

> if (count GT 0)then response[index]=response_templ[index]
> endfor

>

> Cheers,

> Ben

>

>

>

>

>

You should probably also move the check on whether any points use that
kernel to before you bother doing the convolution... so I'd modify that to:

lochist = histogram(loc, min=0, reverse_indices=ri)

for j=0,n-1 do if lochist[j] gt 0 then begin
kernel = kernel_store[*,*,]]
response_temp = convol(img, kernel, /edge_zero, /nan)
index = ri[ri[j]:ri[j+1]-1]
response[index] = response_temp[index]
endif

-Jeremy.

Subject: Re: faster convol on local subsets?
Posted by Yngvar Larsen on Mon, 05 Dec 2011 10:54:10 GMT

View Forum Message <> Reply to Message

On Dec 5, 1:37 am, Andre <note....@gmail.com> wrote:

> Hello experts,

>

> Maybe somebody has an easy solution for this?

> | have a 2D array (img) and want the filter response from kernels that vary according to the
image position. In a second array (loc, same dimensions as img) | have the information which
kernel should be used at each pixel. My current approach is to first convolve the full image with
the j-th kernel and take the response only at the positions with the current j indexed in the loc

array:
>

> for j=0, n do begin

> kernel=kernel_store[*,*,]]

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33348&goto=78627#msg_78627
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78627
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> response_temp = convol(img, kernel, /edge_zero, /NAN)

> index=where(loc eq j)

> if (index[0] gt -1)then response[index]=response_temp[index]
> endfor

>

> | works fine, but it is relatively slow and | wonder if there is a smarter (faster) to apply only the
convolutions that are really needed?
>

> Thanks in advance for any help!

Yes, it seems like IDL does not implement 2D convolution very

efficiently. | found out that a straight forward implementation by

zeropadding to a power-of-2 length followed by multiplication in the

FFT domain is much faster unless the convolution kernel is very small.
Something like this (when /EDGE_ZERO and /NORMALIZE is set, some more
work for other EDGE_* keywords):

sizeA = size(array, /dimensions)
sizeB = size(kernel, /dimensions)

diml = sizeA[0] + sizeB[0] - 1
dim2 = sizeA[1] + sizeB[1] - 1

sl = 2L”ceil(alog(dim1)/alog(2))
s2 = 2L ceil(alog(dim2)/alog(2))

A = dcomplexarr(sl, s2)
B = dcomplexarr(sl, s2)

A[0,0] = array
B[0,0] = kernel

convol = fft(fft(A)*fft(B), /inverse)*s1*s2
convol = convol[sizeB[0]/2:sizeB[0]/2+sizeA[0]-1, $
sizeB[1]/2:sizeB[1]/2+sizeA[1]-1]

convol = double(convol)/total(abs(kernel))

Yngvar

Subject: Re: faster convol on local subsets?
Posted by Andre on Mon, 05 Dec 2011 23:17:48 GMT

View Forum Message <> Reply to Message

On Dec 5, 11:54 am, Yngvar Larsen <larsen.yng...@gmail.com> wrote:
> On Dec 5, 1:37 am, Andre <note....@gmail.com> wrote:

Page 4 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7359
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33348&goto=78621#msg_78621
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78621
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> Hello experts,

>

>> Maybe somebody has an easy solution for this?

>> | have a 2D array (img) and want the filter response from kernels that vary according to the
image position. In a second array (loc, same dimensions as img) | have the information which
kernel should be used at each pixel. My current approach is to first convolve the full image with
the j-th kernel and take the response only at the positions with the current j indexed in the loc

array:
>

>> for j=0, n do begin

>> kernel=kernel_store[*,* j]

>> response_temp = convol(img, kernel, /edge_zero, /INAN)

>> index=where(loc eq j)

>> if (index[0] gt -1)then response[index]=response_temp[index]
>> endfor

>

>> | works fine, but it is relatively slow and | wonder if there is a smarter (faster) to apply only the
convolutions that are really needed?
>

>> Thanks in advance for any help!

Yes, it seems like IDL does not implement 2D convolution very

efficiently. | found out that a straight forward implementation by

zeropadding to a power-of-2 length followed by multiplication in the

FFT domain is much faster unless the convolution kernel is very small.
Something like this (when /EDGE_ZERO and /NORMALIZE is set, some more
work for other EDGE_* keywords):

sizeA = size(array, /dimensions)
sizeB = size(kernel, /dimensions)

diml = sizeA[0] + sizeB[0] - 1
dim2 = sizeA[1] + sizeB[1] - 1

sl = 2L ceil(alog(dim1)/alog(2))
s2 = 2L ceil(alog(dim2)/alog(2))

A = dcomplexarr(sl, s2)
B = dcomplexarr(sl, s2)

A[0,0] = array
B[0,0] = kernel

convol = fft(fft(A)*fft(B), /inverse)*s1*s2
convol = convol[sizeB[0]/2:sizeB[0]/2+sizeA[0]-1, $
sizeB[1]/2:sizeB[1]/2+sizeA[1]-1]

VVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Page 5 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

convol = double(convol)/total(abs(kernel))

>
>
>
> Yngvar

Thanks for all the suggestions so far.

| tried it with the changes that Jeremy suggested but for some reason

it runs even a little bit slower than the original version.

On a 2300x2900 array the original loop runs for 322.46600s while with
REVERSEINDICES it needs 394.51800s (even when precomputing the kernel
outside the loop). My guess is that it takes more time because calling

the routine in each loop is expensive (http://ross.iasfbo.inaf.it/IDL/
Robishaw/idIfast.html).

| did not yet find time to check the implementation that Yngvar

suggested but tried http://idlastro.gsfc.nasa.gov/ftp/pro/image/convolve.pro
which also implements convolution in the Fourier domain. Still its

slower than the native IDL convolution. According to a comment in

their code IDL 8.1 has a CONVOL_FFT() which seems worth a further try
after | got the update.

Last | also tried to convolve at each position only with desired
kernel. The code looks more or less like this

m=half_kernel_size
nc= number of columns of the input
nr = number of rows of the input

for i=m, nc - m-1 do begin
for j=m, nr - m-1 do begin
patch=img[i-m:i+m, j-m:j+m]
kernel=kernel_store[*,*, (max_loc]i,j])]
temp = convol(patch, kernel])
responseli,j] = temp[m, m]
endfor
endfor

As expected the convolution runs much quicker than on the full image
but the large number of loops eats up all that speed gains and in the
end its even 409.56500s for the same array as before.

...to be continued...

Subject: Re: faster convol on local subsets?
Posted by Yngvar Larsen on Tue, 06 Dec 2011 14:23:07 GMT

View Forum Message <> Reply to Message

On Dec 6, 12:17 am, Andre <note....@gmail.com> wrote:

Page 6 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33348&goto=78613#msg_78613
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=78613
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> | did not yet find time to check the implementation that Yngvar

> suggested but tried http://idlastro.gsfc.nasa.gov/ftp/pro/image/convolve.pro
> which also implements convolution in the Fourier domain. Still its

> slower than the native IDL convolution.

This is not my experience. | typically got a speedup by a factor of
10-100 for some applications where the kernels are quite large.

> According to a comment in
> their code IDL 8.1 has a CONVOL_FFT() which seems worth a further try
> after | got the update.

| didn't know that. Thanks for the tip!

Last | also tried to convolve at each position only with desired
kernel. The code looks more or less like this

m=half_kernel_size
nc= number of columns of the input
nr = number of rows of the input

for i=m, nc - m-1 do begin
for j=m, nr - m-1 do begin
patch=img[i-m:i+m, j-m:j+m]
kernel=kernel_store[*,*, (max_loc]i,j])]
temp = convol(patch, kernel])
responsel[i,j] = temp[m, m]
endfor
endfor

VVVVVVVVYVVYVYVYVYVYV

You are calculating the 2D convolution of PATCH and KERNEL, and then
picking out only one element. You could try to calculate this element
by hand, which should be a linear operation.

What is the typical dimension of KERNEL_STORE?

Yngvar

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

