Subject: Re: The IDL way, summing variable sized slices of array.
Posted by Russell[1] on Wed, 04 Apr 2012 14:59:54 GMT

View Forum Message <> Reply to Message

On Apr 4, 4:.00 am, d19997...@gmail.com wrote:

> Hi,

>

> [|'ve recently been learning how to use REBIN/REFORM etc. to do the heavy lifting rather than
loops, (saving me at least an order of magnitude in execution time in some of the code I'm
working with). | have a situation now where | don't know if it's possible to completely remove loops
so | was hoping someone more experienced could illuminate me.

>

> In essence the problem is that | have a 3D array which | want to reduce to a 2D array by
summing over elements of the first dimension. This wouldn't be an issue apart from the fact that
the range of elements that | wish to sum over varies depending on the value of the second
dimension.

>

In code what | have at the moment looks a bit like:

d=DBLARR(nt,nl,ne) ;Array of data
t=DBLARR(nt) ; Array of "axis" values
b=DBLARR(nl,2) ;Array of summation limits
p=DBLARR(nl,ne) ; Array of answer

;<<BIT OF CODE TO FILL THESE ARRAYS>>

FOR i=0L,nl-1 DO BEGIN
tmp=TOTAL(d[b[i,0]:b[i,1],i,*],1) ;Sum elements
p[i,*]=tmp/TOTAL(t[b]i,0]:b[i,1]]) ;Store sum divided by sum of axis (i.e. get average value
over summation range)
ENDFOR
RETURN,p

VVVVVVVYVYVYVYVYV

Any help will be appreciated,

V V.V VYV

> Note whilst nl is not necessarily large in the cases I'll be looking at, i'm still interesting in "the
IDL way" for this as part of my learning!

>

> Thanks,

> David

Not, sure... This sounds like the rare case were loops are useful.
BTW, I'm guessing you have a loop to fill the arrays? If so, then why
not stick this part in that loop?

Russell

Page 1 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7400
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33811&goto=79756#msg_79756
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79756
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: The IDL way, summing variable sized slices of array.
Posted by d19997919 on Wed, 04 Apr 2012 15:38:33 GMT

View Forum Message <> Reply to Message

On Wednesday, April 4, 2012 3:59:54 PM UTC+1, Russell wrote:

> On Apr 4, 4:00 am, d19997...@gmail.com wrote:

>> Hi,

>>

>> |'ve recently been learning how to use REBIN/REFORM etc. to do the heavy lifting rather than
loops, (saving me at least an order of magnitude in execution time in some of the code I'm
working with). | have a situation now where | don't know if it's possible to completely remove loops
so | was hoping someone more experienced could illuminate me.

>>

>> |n essence the problem is that | have a 3D array which | want to reduce to a 2D array by
summing over elements of the first dimension. This wouldn't be an issue apart from the fact that
the range of elements that | wish to sum over varies depending on the value of the second
dimension.

>>

>> |n code what | have at the moment looks a bit like:

>>

>> d=DBLARR(nt,nl,ne) ;Array of data

>> t=DBLARR(nt) ; Array of "axis" values

>> p=DBLARR(nI,2) ;Array of summation limits

>> p=DBLARR(nl,ne) ; Array of answer

>>

>> ;<<BIT OF CODE TO FILL THESE ARRAYS>>

>>

>> FOR i=0L,nl-1 DO BEGIN

>> tmp=TOTAL(d[b[i,0]:b[i,1],i,*],1) ;Sum elements

>> pli,*]=tmp/TOTAL(t[b[i,0]:b[i,1]]) ;Store sum divided by sum of axis (i.e. get average value
over summation range)

>> ENDFOR

>> RETURN,p

>>

>> Any help will be appreciated,

>>

>> Note whilst nl is not necessarily large in the cases I'll be looking at, i'm still interesting in "the
IDL way" for this as part of my learning!

\Y

>>

>> Thanks,

>> David

>

> Not, sure... This sounds like the rare case were loops are useful.

> BTW, I'm guessing you have a loop to fill the arrays? If so, then why
> not stick this part in that loop?

>

> Russell

Actually I've managed to eliminate loops in the other bit of code to fill the arrays (and this code

Page 2 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7522
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33811&goto=79755#msg_79755
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79755
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

actually consists of a few other functions).

One way I've thought of doing this is to create a logical array which has the same dimensions as d
and is zero outside the b index range and 1 inside. | can then multiply d by this and then just sum
over the whole array, seen as d is now zero outside the region of interest it shouldn't effect the
result of the call to TOTAL.

Any tips on the best way to achieve this?

Subject: Re: The IDL way, summing variable sized slices of array.
Posted by cgguido on Wed, 04 Apr 2012 16:01:37 GMT

View Forum Message <> Reply to Message

How about something like:
lo=rebin(b[*,0], [nl,nt])
hi=rebin(b[*,1], [nl,nt])

logic=(d ge lo) AND (d It hi)
newd=d*logic

Not sure | get what your 't array is for, but:
p=total(newd,1)/total(logic,1) ;should do it

| may very well have switched dimensions 7 times in the above code. columns-rows
rows-columns... yikes

G

Subject: Re: The IDL way, summing variable sized slices of array.
Posted by d19997919 on Thu, 05 Apr 2012 08:39:37 GMT

View Forum Message <> Reply to Message

On Wednesday, April 4, 2012 5:01:37 PM UTC+1, Gianguido Cianci wrote:
How about something like:

lo=rebin(b[*,0], [nl,nt])

hi=rebin(b[*,1], [nl,nt])

logic=(d ge lo) AND (d It hi)
newd=d*logic

Not sure | get what your 't array is for, but:

p=total(newd,1)/total(logic,1) ;should do it

VVVVVVVYVYVYVYV

Page 3 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5489
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33811&goto=79754#msg_79754
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79754
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7522
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=33811&goto=79851#msg_79851
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=79851
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> | may very well have switched dimensions 7 times in the above code. columns-rows
rows-columns... yikes

>

> G

Thanks, your approach didn't quite work (probably due to my poor description of my problem) but
something similar based of it did.

For interest the "solution” is given below, any comments on things I'm doing inefficiently would be
appreciated.

<SOME INITIALISATION CODE/INTERFACE CODE>

;Get dimensions
nth=N_ELEMENTS(bmag)
nla=N_ELEMENTS(lambda)
nen=N_ELEMENTS(energy)

:Find where theta=+/- pi
lind=NEAREST (theta,-!DPI)
uind=NEAREST (theta,!DPI)

;Calculate arc length array
dI=REBIN(GET_FIELDLINE_WEIGHT(THETA=THETA,JACOB=JACOB),[nth,
nla,nen],/SAMPLE)

;Precession drift is the bounce average of the grad-B+curvature drifts

:Define for passing particles as -1

;->Begin by getting the drift frequencies

;Pass in extra to allow ky and delt to be specified if desired
drift=get_drift_freq(LAMBDA=LAMBDA,BMAG=BMAG,ENERGY=ENERGY,$
CVDRIFT=CVDRIFT,GBDRIFT=GBDRIFT, EXTRA=_EXTRA)

:Multiply drift frequency by arc length array
drift=TEMPORARY (drift)*dl

:Now want to bounce average this, so get the bounce points
bounce=get_bounce_points(THETA=THETA,LAMBDA=LAMBDA,BMAG=BMAG)

;For passing patrticles, which have bounce == -1, set to indices
;corresponding to +/- Pi

bounce[*,0]=(lind+1)*(bounce[*,0] EQ -1)+TEMPORARY (bouncel[*,0])
bounce[*,1]=(uind+1)*(bounce[*,1] EQ -1)+TEMPORARY (bounce[*,1])

;Create logic arrays about which regions we're interested in
lo=TRANSPOSE(REBIN(bounce[*,0],[nla,nen,nth],/SAMPLE),[2,0,1])
hi=TRANSPOSE(REBIN(bounce[*,1],[nla,nen,nth],/SAMPLE),[2,0,1])
logi=REBIN(BINDGEN(nth),[nth,nla,nen],/SAMPLE)

Page 4 of 5 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

logi=(logi GT lo) AND (logi LT hi)

;Clear memory
bounce=0

:Now get velocity grids

vel=get_velocity grids(LAMBDA=LAMBDA,BMAG=BMAG,ENERGY=ENERGY)
vpa=REFORM(vel.vpa[**,*,0],/OVERWRITE)

;Set any vpa=0 points to 1, ok as we ignore these points anyway in the end
vpa=(vpa EQ 0)+TEMPORARY (vpa)

;Clear memory
vel=0

;Sum up arrays over whole theta dimension, noting that
;logi==0 outside the bounce points
drift=TOTAL((drift*logi/vpa),1)
div=TOTAL((d*logi/vpa),1)

;Account for totally trapped particles where div==
div=div+(div EQ 0)

drift=TEMPORARY (drift)*(div NE 0)+(div EQ 0)
precfreq=TEMPORARY (drift)/ TEMPORARY (div)

;Clear memory
drift=0
div=0

;Change passing particles value if requested
IF N_ELEMENTS(PASSING) NE 0 THEN precfreq=precfreg*(10[0,*,*] NE lind)+PASSING*(Io[0,*,*
EQ lind)

:Make and return answer
RETURN,precfreq

Page 5 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

