Subject: Re: Feature, or bug?
Posted by Lajos Foldy on Sun, 20 May 2012 12:08:12 GMT

View Forum Message <> Reply to Message

On Saturday, May 19, 2012 9:20:40 PM UTC+2, whdaffer wrote:

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Found an interesting, ummm, feature.
| frequently use the following construct.

if n_elements(a) * n_elements(b) * ... * n_elements(z) eq 0 then
begin

Message,'....'
endif

with a catch block to do my preliminary argument processing.

It turns out, there are circumstances where this product can equal 0,
even when all the n_element()'s return non-zero numbers

To see this, consider...

IDL> print, long(27072)"6
0

Any more than 5 arrays with 27072 elements followed by whatever else
and that construct will always evaluate to 0. | had 6, plus a few that
had fewer elements.

| also tried a case where | put the arrays with fewer alements up
front. It failed too.

IDL> a=(b=(c=(d=(e=(f=fltarr(27072))))))

IDL> print,(n_elements(fltarr(10)) *n_elements(1) *n_elements(a))
*n_elements(b) * n_elements(c) *n_elements(d) *
n_elements(e)*n_elements(f) & print,check_math()

0

0

and check_math says all is okay (If | understand check _math correctly)

Doesn't seem to be a 32-bit/64-bit issue, | replicated it on a 64-bit
machine.

Page 1 of 9 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7456
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34005&goto=80241#msg_80241
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80241
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

IDL> help,!version
** Structure 'VERSION, 8 tags, length=76, data length=76:
ARCH STRING 'x86'
oS STRING 'linux'
OS_FAMILY STRING  'unix'
OS_NAME STRING 'linux'
RELEASE STRING '8.1'
BUILD_DATE STRING 'Mar 9 2011

MEMORY_BITS INT 32
FILE_OFFSET_BITS
INT 64
IDL>

Since n_elements returns a long (not even a ulong, which, when you
think about it for a second, it really should, but that wouldn't have
helped me, in my particular case because that had the same behavior) |
guess the upshot is: don't use that construct!

Safer would be

if (n_elements(a) eq 0)*... then begin ...

| just never imagined that | could multiply nonzero integers together
and get a zero!

whd

whd27072)"6

On Saturday, May 19, 2012 9:20:40 PM UTC+2, whdaffer wrote:

>
>
>
>
>
>
>
>
>
>
>
>
>
>
>

Found an interesting, ummm, feature.
| frequently use the following construct.
if n_elements(a) * n_elements(b) * ... * n_elements(z) eq 0 then
begin
Message,'....'
endif

with a catch block to do my preliminary argument processing.

It turns out, there are circumstances where this product can equal O,
even when all the n_element()'s return non-zero numbers

To see this, consider...

Page 2 of 9 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

IDL> print, long(27072)"6
0

Any more than 5 arrays with 27072 elements followed by whatever else
and that construct will always evaluate to 0. | had 6, plus a few that
had fewer elements.

| also tried a case where | put the arrays with fewer alements up
front. It failed too.

IDL> a=(b=(c=(d=(e=(f=fltarr(27072))))))

IDL> print,(n_elements(fltarr(10)) *n_elements(1) *n_elements(a))
*n_elements(b) * n_elements(c) *n_elements(d) *
n_elements(e)*n_elements(f) & print,check_math()

0

0

and check_math says all is okay (If | understand check _math correctly)

Doesn't seem to be a 32-bit/64-bit issue, | replicated it on a 64-bit
machine.

IDL> help,!version

** Structure 'VERSION, 8 tags, length=76, data length=76:
ARCH STRING 'x86'

(OR) STRING 'linux'

OS_FAMILY STRING 'unix’

OS_NAME STRING 'linux’

RELEASE STRING '8.1°

BUILD_DATE STRING ‘'Mar 92011

MEMORY_BITS INT 32
FILE_OFFSET_BITS
INT 64
IDL>

Since n_elements returns a long (not even a ulong, which, when you
think about it for a second, it really should, but that wouldn't have
helped me, in my particular case because that had the same behavior) |
guess the upshot is: don't use that construct!

Safer would be

Page 3 of 9 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if (n_elements(a) eq 0)*... then begin ...

| just never imagined that | could multiply nonzero integers together
and get a zero!

whd

VVVVYVYVYVYVYV

whd

2707276 is 393660688903146891330453504, too big for a long integer, so the last 32 bits are
kept (2707276 modulo 2732). 393660688903146891330453504 = 91656271578545424 * 232,
so the result is zero. It's a feature of integer representation. check_math does not report integer
overflow.

regards,
Lajos

Subject: Re: Feature, or bug?
Posted by whdaffer on Mon, 21 May 2012 16:31:30 GMT

View Forum Message <> Reply to Message

On May 20, 5:08 am, fawltylangu...@gmail.com wrote:
> On Saturday, May 19, 2012 9:20:40 PM UTC+2, whdaffer wrote:
>> Found an interesting, ummm, feature.

>

>> | frequently use the following construct.

>

>> jf n_elements(a) * n_elements(b) * ... * n_elements(z) eq 0 then
>> begin

>> Message,'...."

>> endif

>

>> with a catch block to do my preliminary argument processing.

>

>> |t turns out, there are circumstances where this product can equal O,
>> even when all the n_element()'s return non-zero numbers

>

>> To see this, consider...

>

>> |DL> print, long(27072)"6

>> 0

>

>> Any more than 5 arrays with 27072 elements followed by whatever else
>> and that construct will always evaluate to 0. | had 6, plus a few that
>> had fewer elements.

Page 4 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3400
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34005&goto=80232#msg_80232
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80232
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> | also tried a case where | put the arrays with fewer alements up
>> front. It failed too.

>

>> |IDL> a=(b=(c=(d=(e=(f=fltarr(27072))))))

>> |DL> print,(n_elements(fltarr(10)) *n_elements(1) *n_elements(a))
>> *n_elements(b) * n_elements(c) *n_elements(d) *

>> n_elements(e)*n_elements(f) & print,check_math()

>> 0

>> 0

>

>> and check_math says all is okay (If | understand check _math correctly)
>

>> Doesn't seem to be a 32-bit/64-bit issue, | replicated it on a 64-bit
>> machine.

>

>> |DL> help,!version

>> ** Structure !VERSION, 8 tags, length=76, data length=76:

>> ARCH STRING 'x86'

>> OS STRING linux'

>> OS_FAMILY STRING 'unix’'

>> 0OS_NAME STRING 'linux'

>> RELEASE STRING '8.1°

>> BUILD _DATE STRING ‘'Mar 92011’

>> MEMORY_BITS INT 32
>> FILE_OFFSET BITS

>> INT 64

>> IDL>

>

>> Since n_elements returns a long (not even a ulong, which, when you
>> think about it for a second, it really should, but that wouldn't have

>> helped me, in my particular case because that had the same behavior) |
>> guess the upshot is: don't use that construct!

>

>> Safer would be

>

>> if (n_elements(a) eq 0)*... then begin ...

>

>> | just never imagined that | could multiply nonzero integers together
>> and get a zero!

>

>> whd

>

>> whd27072)"6

> On Saturday, May 19, 2012 9:20:40 PM UTC+2, whdaffer wrote:

>> Found an interesting, ummm, feature.

>

>> | frequently use the following construct.

Page 5 of 9 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>
>>
>>

>>

>>
>>

>>

>>
>>

>>
>>
>>

>>
>>

>>
>>
>>
>>
>>
>>

>>

>>
>>

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

if n_elements(a) * n_elements(b) * ... * n_elements(z) eq 0 then
begin
Message,'....'
endif
with a catch block to do my preliminary argument processing.

It turns out, there are circumstances where this product can equal O,
even when all the n_element()'s return non-zero numbers

To see this, consider...

IDL> print, long(27072)"6
0

Any more than 5 arrays with 27072 elements followed by whatever else
and that construct will always evaluate to 0. | had 6, plus a few that
had fewer elements.

| also tried a case where | put the arrays with fewer alements up
front. It failed too.

IDL> a=(b=(c=(d=(e=(f=fltarr(27072))))))

IDL> print,(n_elements(fltarr(10)) *n_elements(1) *n_elements(a))
*n_elements(b) * n_elements(c) *n_elements(d) *
n_elements(e)*n_elements(f) & print,check_math()

0

0

and check_math says all is okay (If | understand check_math correctly)

Doesn't seem to be a 32-bit/64-bit issue, | replicated it on a 64-bit
machine.

IDL> help,!version
** Structure 'VERSION, 8 tags, length=76, data length=76:
ARCH STRING 'x86'
oS STRING 'linux'
OS_FAMILY STRING  'unix’
OS_NAME STRING 'linux'
RELEASE STRING '8.1
BUILD_DATE STRING 'Mar 9 2011’

MEMORY_BITS INT 32
FILE_OFFSET_BITS
INT 64
IDL>

Page 6 of 9 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Since n_elements returns a long (not even a ulong, which, when you

>> think about it for a second, it really should, but that wouldn't have

>> helped me, in my particular case because that had the same behavior) |

>> guess the upshot is: don't use that construct!

>

>> Safer would be

>

>> if (n_elements(a) eq 0)*... then begin ...

>

>> | just never imagined that | could multiply nonzero integers together

>> and get a zero!

>

>> whd

>

>> whd

>

> 2707276 is 393660688903146891330453504, too big for a long integer, so the last 32 bits are
kept (2707276 modulo 2732). 393660688903146891330453504 = 91656271578545424 * 2732,
so the result is zero. It's a feature of integer representation. check _math does not report integer
overflow.

Hmmmm... Well check_math _does_ claim that it will report integer
overflow, in bit 1.

But | wouldn't be using check_math to check for that condition in the
construct | was using anyway, so it's moot that check_math apparently
falls down on the job, at least in this case.

Thanks for the explanation.
whd
>

> regards,
> Lajos

Subject: Re: Feature, or bug?
Posted by Lajos Foldy on Mon, 21 May 2012 17:13:08 GMT

View Forum Message <> Reply to Message

Hmmmm... Well check_math _does_ claim that it will report integer
overflow, in bit 1.

construct | was using anyway, so it's moot that check_math apparently

>
>
>
> But | wouldn't be using check _math to check for that condition in the
>
> falls down on the job, at least in this case.

>

Page 7 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7456
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34005&goto=80231#msg_80231
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80231
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Thanks for the explanation.
>

> whd

>

>>

>> regards,
>> Lajos

The check_math help says: "Some hardware/operating system combinations may not report all of
the math errors listed." Integer overflow is listed, but not checked and reported :-)

Integer overflow is "undefined behaviour" in standard C, so it can not be done in a portable way.
The glibc manual says:

FPE_INTOVF_TRAP

Integer overflow (impossible in a C program unless you enable overflow trapping in a
hardware-specific fashion).

regards,
Lajos

Subject: Re: Feature, or bug?
Posted by whdaffer on Wed, 23 May 2012 19:32:06 GMT

View Forum Message <> Reply to Message

On May 21, 10:13 am, fawltylangu...@gmail.com wrote:

>> Hmmmm... Well check_math _does_ claim that it will report integer

>> overflow, in bit 1.

>

>> But | wouldn't be using check_math to check for that condition in the
>> construct | was using anyway, so it's moot that check _math apparently
>> falls down on the job, at least in this case.

>

>> Thanks for the explanation.
>

>> whd

>

>>> regards,

>>> Lajos

>

> The check_math help says: "Some hardware/operating system combinations may not report all
of the math errors listed."” Integer overflow is listed, but not checked and reported :-)

Why yes! So it does. And just one line after the table where it claims
to report integer overflows!

Page 8 of 9 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3400
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34005&goto=80295#msg_80295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The right hand giveth, and the left taketh away, | guess ;-)

>
> Integer overflow is "undefined behaviour" in standard C, so it can not be done in a portable
way. The glibc manual says:

>

> FPE_INTOVF_TRAP

>

> Integer overflow (impossible in a C program unless you enable overflow trapping in a
hardware-specific fashion).

Which, means, effectively, that check_math for integer overflow is
worthless since | doubt that ITT or whatever they're called this week
is going to enable overflow trapping in a hardware-specific fashion.

Is the situation similar for the other errors?

whd

Page 9 of 9 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

