Subject: Re: Efficiently perform histogram reverse indices like procedure on a string
array?
Posted by ben.bighair on Thu, 26 Jul 2012 01:34:22 GMT

View Forum Message <> Reply to Message

On Wednesday, July 25, 2012 7:39:33 PM UTC-4, Bogdanovist wrote:

> | have an array of a data structure, one tag of which is a string identifier indicating which
location the data belongs to. There are many thousands of data points, but only about a dozen or
SO unique locations.

>

> | make frequent use of the HISTOGRAM function with the reverse_indices in order to carve up
data by some identifier, most commonly the time. In this case, | want to divide out the data by site
efficiently. | can't use HISTOGRAM on strings, so | need some other approach. There are
plenty of ways this can be done, but 1'd like some views on the better and most efficient
ways to do it.

>

> Take an example, say we have a simple string array

>

> foo=['a','b','c& #39;,'b','b','a&
#39;,'a','c']

>
> To determine the list of unique strings we could do
>

> sfoo = foo[sort(foo)]

> print,sfoo[uniq(sfoo)]

>

> We can then repeatedly use WHERE to find the indices in the data array(s) corresponding to
each site.

>

> |s there a quicker/better way to do this? Repeatedly calling WHERE seems inefficient (certainly
HISTOGRAM is way faster when it is usable)

Hi,

You can convert your strings to unique numbers - it's a bit awkward - and then you may find the
the spacing between populated bins makes the whole thing drag when you do the histogram. But
here goes...

foo = ['az','bs','cd’,'ba’,'ba’,'az','aa’,'c'] ; tricky strings
boo = strtrim(fix(byte(foo)),2) ; note the 'fix' in there
so0o0 = strjoin(boo)

noo = long(soo)

There you go - numbers as unique as the strings you started with.

Cheers,
Ben

Page 1 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34317&goto=80995#msg_80995
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80995
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Efficiently perform histogram reverse indices like procedure on a string
array?
Posted by Jeremy Bailin on Thu, 26 Jul 2012 02:17:16 GMT

View Forum Message <> Reply to Message

On 7/25/12 9:09 PM, Bogdanovist wrote:

> | have an array of a data structure, one tag of which is a string identifier indicating which
location the data belongs to. There are many thousands of data points, but only about a dozen or
SO unique locations.

>

> | make frequent use of the HISTOGRAM function with the reverse_indices in order to carve up
data by some identifier, most commonly the time. In this case, | want to divide out the data by site
efficiently. | can't use HISTOGRAM on strings, so | need some other approach. There are plenty
of ways this can be done, but I'd like some views on the better and most efficient ways to do it.

Take an example, say we have a simple string array
foo=['a’','b’",'c','b",'b",'a’,'a’,'c']
To determine the list of unique strings we could do

sfoo = foo[sort(foo)]
print,sfoo[uniqg(sfoo)]

VVVVYVYVYVYVYV

>
> We can then repeatedly use WHERE to find the indices in the data array(s) corresponding to

each site.
>

> |s there a quicker/better way to do this? Repeatedly calling WHERE seems inefficient (certainly
HISTOGRAM is way faster when it is usable)

Use VALUE_LOCATE to find where in the list of unique indices the
elements belong to, and use that index as a number that you can run
HISTOGRAM on.

(raise your hand everyone who saw that coming...)

-Jeremy.

Subject: Re: Efficiently perform histogram reverse indices like procedure on a string
array?
Posted by ben.bighair on Thu, 26 Jul 2012 17:30:37 GMT

View Forum Message <> Reply to Message

On Wednesday, July 25, 2012 10:17:16 PM UTC-4, Jeremy Bailin wrote:

> On 7/25/12 9:09 PM, Bogdanovist wrote:

> > | have an array of a data structure, one tag of which is a string identifier indicating which
location the data belongs to. There are many thousands of data points, but only about a dozen or

Page 2 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34317&goto=80994#msg_80994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80994
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34317&goto=80990#msg_80990
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80990
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

SO unique locations.

> >

> > | make frequent use of the HISTOGRAM function with the reverse_indices in order to carve
up data by some identifier, most commonly the time. In this case, | want to divide out the data by
site efficiently. | can't use HISTOGRAM on strings, so | need some other approach. There
are plenty of ways this can be done, but 1'd like some views on the better and most efficient
ways to do it.

> >

> > Take an example, say we have a simple string array

> >

> > foo=['a','b','c& #39;,'b','b','a&
#39;,'a','c']

&at;

> To determine the list of unique strings we could do

&at;

> sfoo = foo[sort(foo)]

> print,sfoo[unig(sfoo)]

>

> We can then repeatedly use WHERE to find the indices in the data array(s) corresponding
to each site.

> &g,

> > Is there a quicker/better way to do this? Repeatedly calling WHERE seems inefficient
(certainly HISTOGRAM is way faster when it is usable)

>

V VVVYVYVYV

> Use VALUE_LOCATE to find where in the list of unique indices the
> elements belong to, and use that index as a number that you can run
> HISTOGRAM on.

>

> (raise your hand everyone who saw that coming...)

>

> -Jeremy.

Not me. | had no idea VALUE_LOCATE works on strings. Now that is cool!

Subject: Re: Efficiently perform histogram reverse indices like procedure on a string
array?
Posted by Jeremy Bailin on Thu, 26 Jul 2012 17:41:08 GMT

View Forum Message <> Reply to Message

>> Use VALUE_LOCATE to find where in the list of unique indices the
>> elements belong to, and use that index as a number that you can run
>> HISTOGRAM on.

>>

>> (raise your hand everyone who saw that coming...)

>>

>> -Jeremy.

>

Page 3 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34317&goto=80989#msg_80989
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80989
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Not me. | had no idea VALUE_LOCATE works on strings. Now that is cool!
Yup, it works on anything that can be sorted.

-Jeremy.

Subject: Re: Efficiently perform histogram reverse indices like procedure on a string
array?
Posted by Craig Markwardt on Thu, 26 Jul 2012 21:33:51 GMT

View Forum Message <> Reply to Message

On Wednesday, July 25, 2012 7:39:33 PM UTC-4, Bogdanovist wrote:

> | have an array of a data structure, one tag of which is a string identifier indicating which
location the data belongs to. There are many thousands of data points, but only about a dozen or
SO unique locations.

>

> | make frequent use of the HISTOGRAM function with the reverse_indices in order to carve up
data by some identifier, most commonly the time. In this case, | want to divide out the data by site
efficiently. | can't use HISTOGRAM on strings, so | need some other approach. There are
plenty of ways this can be done, but 1'd like some views on the better and most efficient
ways to do it.

>

> Take an example, say we have a simple string array

>

> foo=['a','b','c& #39;,'b','b','a&
#39;,'a','c']

>

> To determine the list of unique strings we could do
>

> sfoo = foo[sort(foo)]

> print,sfoo[uniq(sfoo)]

>

> We can then repeatedly use WHERE to find the indices in the data array(s) corresponding to
each site.
>

> [s there a quicker/better way to do this? Repeatedly calling WHERE seems inefficient (certainly
HISTOGRAM is way faster when it is usable)

| prefer to do it slightly differently than your other suggestions.

| locate the breakpoints between different runs of strings like this,

ibreaks = where(sfoo[1:*] NE sfoo, ct)

This gives the interior breakpoints. In your case, ibreaks = [2,5], which is the point where 'a’
changes to 'b’', and 'b' changes to 'c'. Usually | add this little bit of extra post-processing,

Page 4 of 5 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34317&goto=80983#msg_80983
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=80983
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if ct EQ 0 then begin

ibreaks = [0, n_elements(sfoo)]
endif else begin

ibreaks = [0, ibreaks+1, n_elements(sfoo)]
endelse

You need that little extra 'if' statement to handle the case where you have only one unique string,
so there are no breaks at all.

The start of the ith run is indexed by ibreaks[i], and the end of the ith run is indexed by
ibreaks[i+1]-1, where i goes from 0 through n_elements(sfoo)-1.

l.e. the ith run is given by sfoo[ibreaks]i]:ibreaks[i+1]-1]. Of course you can index back into the
original array once you've done this.

Craig

Page 5 of 5 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

