Subject: Re: Copying a hash
Posted by Paul Van Delst[1] on Mon, 06 Aug 2012 21:44:37 GMT

View Forum Message <> Reply to Message

On 08/06/12 16:54, Matt wrote:

> Hi All,

>

> Does anyone know if there's a simple way that | can make a copy of a hash, which | can then

edit independently of the

> original? For example, it seems that, like a pointer, changes that | make to the copy are also

applied to the

> original:

>

> |DL> original=hash(‘'A’, [1, 2]) IDL> copy=original IDL> copy['A’, 1]=10 IDL> print, copy A: 1
10 IDL>

> print, original A: 1 10

>

> | can copy to a new hash key-by-key:

>

> copy=hash() foreach variable, original, key do copy[key]=original[key]

>

>

Which works fine, unless one of the elements in the hash is itself a hash, then | end up with the
same problem one

> level down.

>

> |s there something simple I'm missing here?
This is what the documentation says:
To create a new hash variable whose elements are copies of the values in the original hash, you
could use the following:
newHash = HASH(origHash.Keys(), origHash.Values())
Another method to copy a hash is to use array syntax to copy all of the elements:

newHash = origHash[*]

This is equivalent to using HASH(origHash.Keys(), origHash.Values()) and is provided as a
programming shortcut.

For example:

hashl = HASH('key1', 1, 'key2', 2)
hash2 = hash1[*]

hash2[keyl'] = 'hello’

HELP, hashl['keyl], hash2['key2']

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34325&goto=81001#msg_81001
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81001
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL Prints:

<Expression> STRING =1
<Expression> STRING = 'hello’

Note that the value in hashl remains unchanged.

There's no mention of what happens if a hash value is itself a hash though.
cheers,

paulv

Subject: Re: Copying a hash
Posted by Paul Van Delst[1] on Mon, 06 Aug 2012 22:56:43 GMT

View Forum Message <> Reply to Message

With apologies for replying to my own email, but | had to try it out....

On 08/06/12 17:44, Paul van Delst wrote:

> On 08/06/12 16:54, Matt wrote:

>> Hi All,

>>

>> Does anyone know if there's a simple way that | can make a copy of a hash, which | can then
edit independently of the

>> original? For example, it seems that, like a pointer, changes that | make to the copy are also
applied to the

>> original:

>>

>> |DL> original=hash('A’, [1, 2]) IDL> copy=original IDL> copy['A', 1]=10 IDL> print, copy A:

1 10IDL>

>> print, original A: 1 10

>>

>> | can copy to a new hash key-by-key:

>>

>> copy=hash() foreach variable, original, key do copy[key]=original[key]

>>

>> Which works fine, unless one of the elements in the hash is itself a hash, then | end up with
the same problem one

>> |level down.

>>

>> |s there something simple I'm missing here?

>

> This is what the documentation says:

>

Page 2 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34325&goto=81100#msg_81100
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81100
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

p— Yo<-----
> To create a new hash variable whose elements are copies of the values in the original hash,
you could use the following:

>

> newHash = HASH(origHash.Keys(), origHash.Values())

>

> Another method to copy a hash is to use array syntax to copy all of the elements:
>

> newHash = origHash[*]

>

> This is equivalent to using HASH(origHash.Keys(), origHash.Values()) and is provided as a
programming shortcut.

>

> For example:

>

> hashl = HASH('keyl', 1, 'key2', 2)

> hash2 = hash1[*]

> hash2['keyl] = 'hello’

> HELP, hashl['keyl", hash2[key2

>

> IDL Prints:

>

> <Expression> STRING =1

> <Expression> STRING = 'hello’

>

> Note that the value in hashl remains unchanged.
- J—— %p<-----

>

> There's no mention of what happens if a hash value is itself a hash though.

IDL> o=hash('a’,[1,2],7,'a string’,5.0,hash('b',indgen(10)))

IDL> print, o

5.00000: <ObjHeapVarl(HASH)>
a 1 2

7: a string

IDL> c=0[*]

IDL> print, c

5.00000: <ObjHeapVarl(HASH)>
a 1 2

7: a string

IDL> c['a’,1]=10

IDL> print, c
5.00000: <ObjHeapVarl(HASH)>

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

a: 1 10

7: a string

IDL> print, o

5.00000: <ObjHeapVarl(HASH)>
a 1 2

7: a string

But, as you can see, the hash in each is the same object reference.

IDL> print, c[5.0,'b"]
0 1 2 3 4 5 6 7 8 9

IDL> print, 0[5.0,'b’]
0 1 2 3 4 5 6 7 8 9

IDL> c[5.0,'b',4]=100
IDL> print, 0[5.0,'b’]
0 1 2 3 100 5 6 7 8 9

Bummer. To be honest, I'm not sure what the correct behaviour should be. Recursively copy all
the components? | guess if

we think of the numbers and strings as objects also, then the answer should probably be yes.... ?
Why duplicate one type

of object (int, float, or string) but not another (hash or list)? Still... it just doesn't seem right.

cheers,

paulv

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

