
Subject: Re: a behemoth bubble sort
Posted by Yngvar Larsen on Wed, 31 Oct 2012 07:47:01 GMT
View Forum Message <> Reply to Message

On Monday, 29 October 2012 22:24:07 UTC+1, fisch...@gmail.com wrote:

> Unfortunately, the bubble sort I've employed in this code needs to run
> through 20 billion+ data points for the program to complete, which is of
> course impossible.

Are you really running the code below on a cube with 20 billion points?

> My current codes is as follows:
[...]
> ;giant for-loop that looks at each individual voxel at each velocity
> ;step and places the velocity at that voxel into the new cube's v-dimension.
> for v = min,max-1 do begin ; v = velocity step
>
> for x = 0,xsize-1 do begin
> for y = 0,ysize-1 do begin
> for z =0,zsize-1 do begin
> if (nifs(x,y,z) eq v) then begin ;if voxel has vth velocity step
> flux(x,y,v-min) = v ;places v at the vth plane of flux cube
> endif
> endfor
> endfor
> endfor
>
> endfor

You can do this with only the outermost loop:

for v = min,max-1 do begin
 ind = where(nifs eq v, count)
 if (count gt 0) then begin
 i3d = array_indices(nifs, ind)
 flux[i3d[0,*], i3d[1,*], i3d[2,*]-min] = v
 endif
endfor

If your datacube is really 20 billion points, you should really divide this into subcubes. This is left
as an exercise for the reader :)

--
Yngvar

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34634&goto=81874#msg_81874
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81874
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: a behemoth bubble sort
Posted by Jeremy Bailin on Thu, 01 Nov 2012 20:03:20 GMT
View Forum Message <> Reply to Message

On 10/29/12 5:24 PM, fischertc13@gmail.com wrote:
> Hi all,
>
> I am currently frustrated trying to convert information from one data cube into another and could
use some direction.
>
> I have a 3-d modeling program which creates a spatial geometry datacube where each voxel in
the geometry contains a velocity. Voxels outside the geometry are assigned an artificially high
velocity that is set to be transparent in the modeling program. What I would like to do is to create a
datacube with dimensions of x, y, and velocity from the spatial data cube of x,y, and z.
>
> Unfortunately, the bubble sort I've employed in this code needs to run
> through 20 billion+ data points for the program to complete, which is of
> course impossible. Is there some way to simplify this? Also, is
> there some way to select out the 'good' portion of the initial data cube
> to apply the conversion to instead of the entire thing? You have posted on
> array-juggling similar to this, though after reading the article I was not
> able to apply the technique to my own problem. Any help would be much
> appreciated!
>
> Cheers,
> Travis
>
>
> My current codes is as follows:
>
> ----------
>
> pro slice_run
>
> restore,'nifscube.dat' ; restores spatial datacube 'nifs'
>
> size = size(nifs,/dimensions)
>
> nifs = long(nifs) ; turns velocities to integers
>
> max = max(nifs) ; bad voxels are preset to artificially high maximum velocity
>
> xsize = size[0]
> ysize = size[1]
> zsize = size[2]
>
> good = where(nifs ne max, complement = bad)
> ; find where all true velocity data points exist,
> ; this is not employed elsewhere yet

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34634&goto=81855#msg_81855
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81855
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> nifs(bad) = 0 ; set bad pixels to zero velocity
>
> min = min(nifs,max=max) ; find max/min true velocities
>
> nifs(bad) = max+1 ; reset bad pixels out of velocity range
>
> vsize = max-min ; set velocity space range
>
> flux = fltarr(xsize,ysize,vsize) ; create new velocity data cube where z =
> velocity
>
> ;giant for-loop that looks at each individual voxel at each velocity
> ;step and places the velocity at that voxel into the new cube's v-dimension.
>
> for v = min,max-1 do begin ; v = velocity step
>
> for x = 0,xsize-1 do begin
> for y = 0,ysize-1 do begin
> for z =0,zsize-1 do begin
> if (nifs(x,y,z) eq v) then begin ;if voxel has vth velocity step
> flux(x,y,v-min) = v ;places v at the vth plane of flux cube
> endif
> endfor
> endfor
> endfor
> endfor
>
> end
> -----
>
> Cheers,
> Travis
>

I have done almost exactly this sort of thing with HISTOGRAM (of course)
before. It should look something like (untested). I can come up with
non-loop solutions too, but I think they will die for memory reasons if
your data cube is really that big.

dv=1.0 ; velocity bin size

; find true velocity range
badveldata = max(nifs, min=minvel)
maxvel = max(nifs[where(nifs lt badveldata)])

; dimensions of new array
size=size(nifs, /dimen)

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

xsize = size[0]
ysize = size[1]
vsize = ceil((maxvel-minvel)/dv) + 1
flux = fltarr(xsize, ysize, vsize)

; this vector contains the velocity of each
; element in the 3rd dimension. see comments
; within loop.
vvector = findgen(vsize)*dv + minvel

; iterate through x,y pixels
xynpix = long(xsize)*ysize
for i=0l,xynpix-1 do begin
 ; turn 1D index into separate x and y indices
 xyi = array_indices([xsize,ysize], i, /dimen)
 ; use histogram to find out which velocity
 ; slices at that x,y pixel contain elements
 ; (they are the ones that have a histogram count
 ; greater than 0)
 flux[xyi[0], xyi[1], *] = histogram(nifs[xyi[0],xyi[1],*], $
 min=minvel, max=maxvel, bin=dv) gt 0
 ; instead of a 1, it looks like you want the velocity to be
 ; stored there too? I'm not sure why, since that information
 ; is redundant with the location in the 3rd dimension, but
 ; you can do it by multiplying what is currently either a
 ; 1 or 0 by a vector containing the velocity of each element...
 flux[xyi[0],xyi[1],*] *= vvector
endfor

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

