Subject: Re: a behemoth bubble sort
Posted by Yngvar Larsen on Wed, 31 Oct 2012 07:47:01 GMT

View Forum Message <> Reply to Message

On Monday, 29 October 2012 22:24:07 UTC+1, fisch...@gmail.com wrote:
> Unfortunately, the bubble sort I've employed in this code needs to run

> through 20 billion+ data points for the program to complete, which is of
> course impossible.

Are you really running the code below on a cube with 20 billion points?

> My current codes is as follows:

[.]

> :giant for-loop that looks at each individual voxel at each velocity
> ;step and places the velocity at that voxel into the new cube’s v-dimension.
> for v = min,max-1 do begin ; v = velocity step

>

> for x = 0,xsize-1 do begin

> fory=0,ysize-1 do begin

> for z =0,zsize-1 do begin

> if (nifs(x,y,z) eq v) then begin ;if voxel has vth velocity step
> flux(x,y,v-min) = v ;places v at the vth plane of flux cube
> endif

> endfor

> endfor

> endfor

>

> endfor

You can do this with only the outermost loop:

for v = min,max-1 do begin
ind = where(nifs eq v, count)
if (count gt 0) then begin
i3d = array_indices(nifs, ind)
flux[i3d[0,*], i3d[1,*], i3d[2,*]-min] = v
endif
endfor

If your datacube is really 20 billion points, you should really divide this into subcubes. This is left
as an exercise for the reader :)

Yngvar

Page 1 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34634&goto=81874#msg_81874
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81874
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: a behemoth bubble sort
Posted by Jeremy Bailin on Thu, 01 Nov 2012 20:03:20 GMT

View Forum Message <> Reply to Message

On 10/29/12 5:24 PM, fischertc13@gmail.com wrote:

> Hi all,

>

> | am currently frustrated trying to convert information from one data cube into another and could
use some direction.

>

> | have a 3-d modeling program which creates a spatial geometry datacube where each voxel in
the geometry contains a velocity. Voxels outside the geometry are assigned an artificially high
velocity that is set to be transparent in the modeling program. What | would like to do is to create a
datacube with dimensions of X, y, and velocity from the spatial data cube of x,y, and z.

>

> Unfortunately, the bubble sort I've employed in this code needs to run
> through 20 billion+ data points for the program to complete, which is of
> course impossible. Is there some way to simplify this? Also, is

> there some way to select out the 'good' portion of the initial data cube
> to apply the conversion to instead of the entire thing? You have posted on
> array-juggling similar to this, though after reading the article | was not
> able to apply the technique to my own problem. Any help would be much
> appreciated!

>

> Cheers,

> Travis

>

>

> My current codes is as follows:

>

-

>

> pro slice_run

>

> restore,'nifscube.dat’ ; restores spatial datacube 'nifs'

>

> size = size(nifs,/dimensions)

>

> nifs = long(nifs) ; turns velocities to integers

>

> max = max(nifs) ; bad voxels are preset to artificially high maximum velocity
>

> xsize = size[0]

> ysize = size[1]

> zsize = size[2]

>

> good = where(nifs ne max, complement = bad)

> : find where all true velocity data points exist,

> ; this is not employed elsewhere yet

Page 2 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34634&goto=81855#msg_81855
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=81855
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

\%

V V.V V

nifs(bad) = 0 ; set bad pixels to zero velocity

min = min(nifs,max=max) ; find max/min true velocities
nifs(bad) = max+1 ; reset bad pixels out of velocity range
vsize = max-min ; set velocity space range

flux = fltarr(xsize,ysize,vsize) ; create new velocity data cube where z =
velocity

;giant for-loop that looks at each individual voxel at each velocity
;step and places the velocity at that voxel into the new cube’s v-dimension.

for v = min,max-1 do begin ; v = velocity step

for x = 0,xsize-1 do begin
fory = 0,ysize-1 do begin
for z =0,zsize-1 do begin
if (nifs(x,y,z) eq v) then begin ;if voxel has vth velocity step
flux(x,y,v-min) = v ;places v at the vth plane of flux cube
endif
endfor
endfor
endfor
endfor

Cheers,
Travis

| have done almost exactly this sort of thing with HISTOGRAM (of course)
before. It should look something like (untested). | can come up with
non-loop solutions too, but | think they will die for memory reasons if

your data cube is really that big.

dv=1.0 ; velocity bin size

; find true velocity range
badveldata = max(nifs, min=minvel)
maxvel = max(nifsfwhere(nifs It badveldata)])

; dimensions of new array
size=size(nifs, /dimen)

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

xsize = size[0]

ysize = size[1]

vsize = ceil((maxvel-minvel)/dv) + 1
flux = fltarr(xsize, ysize, vsize)

: this vector contains the velocity of each

; element in the 3rd dimension. see comments
; within loop.

vvector = findgen(vsize)*dv + minvel

; iterate through x,y pixels
xynpix = long(xsize)*ysize
for i=0l,xynpix-1 do begin
; turn 1D index into separate x and y indices
Xyi = array_indices([xsize,ysize], i, /dimen)
; use histogram to find out which velocity
; slices at that x,y pixel contain elements
; (they are the ones that have a histogram count
; greater than 0)
flux[xyi[0], xyi[1], *] = histogram(nifs[xyi[0],xyi[1],*], $
min=minvel, max=maxvel, bin=dv) gt O
; instead of a 1, it looks like you want the velocity to be
; stored there too? I'm not sure why, since that information
; Is redundant with the location in the 3rd dimension, but
; you can do it by multiplying what is currently either a
; 1 or 0 by a vector containing the velocity of each element...
flux[xyi[0],xyi[1],*] *= vvector
endfor

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

