Subject: Re: Displaying Cartesian coordinate data on a sphere
Posted by David Fanning on Tue, 11 Dec 2012 14:17:43 GMT

View Forum Message <> Reply to Message

David Platten writes:

> | have an array of several hundred thousand data points, each with an (x,y,z) coordinate. The
coordinates of every point lies somewhere on the surface of a sphere. Each point represents the
position and energy of an x-ray photon that has left my Monte Carlo simulation geometry.

>

> | would like to be able to view the data as a texture map overlaid onto a spherical object. | have
managed to do this, but I think that the resulting mapping is distorted. I'm not sure how | should
configure GRIDDATA so that the resulting grid can be mapped onto the sphere. Should | be using
a different command to make the grid? Any help that you can offer would be greatly appreciated.
X, Y, Z and energy are vectors containing the coordinates and energy of the photons:

I'm going to guess that you see some clumping in your output.
Have you read this article:

http://www.idlcoyote.com/math_tips/randomsurface.html
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: Displaying Cartesian coordinate data on a sphere
Posted by dplatten on Tue, 11 Dec 2012 15:28:56 GMT

View Forum Message <> Reply to Message

Hi David,

Thanks for the reply. | don't think that it was clumped data - | think it was just my lack of
understanding of how the GRIDDATA command works. I've put together a simple test scenario so
that | can check my sanity. It behaves as | expect, so | think things are OK. My test creates a data
point at the north and south poles, and four around the equator and then interpolates between.

x=[0,0,1,-1,0,0]
y=[0,0,0,0,1, -1]
z=[1,-1,0,0,0,0]
values = [255, 255, 50, 50, 150, 150]

Page 1 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34850&goto=82434#msg_82434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82434
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6287
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34850&goto=82433#msg_82433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

grid = GRIDDATA(X, Y, z, values, DIMENSION=[30, 30], /SPHERE)

image = BYTSCL(grid)
MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)
oModel = OBJ_NEW('IDLgrModel’)
oPalette = OBJ_NEW('IDLgrPalette’)
oPalette -> LOADCT, 33
oPalette -> SetRGB, 255, 255, 255, 255
olmage = OBJ_NEW('IDLgrimage’, image, PALETTE = oPalette)
vector = FINDGEN(101)/100.
texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates|[O, *, *] = vector # REPLICATE(1., 101)
texure_coordinates[1, *, *] = REPLICATE(1., 101) # vector
oPolygons = OBJ_NEW('IDLgrPolygon’, $
DATA = vertices, POLYGONS = polygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = olmage, /ITEXTURE_INTERP)
oModel -> ADD, oPolygons
oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90
XOBJVIEW, oModel

Regards,

David

Subject: Re: Displaying Cartesian coordinate data on a sphere
Posted by dplatten on Wed, 12 Dec 2012 09:53:28 GMT

View Forum Message <> Reply to Message

| have found the following solution to be more reliable. It uses the /GRID, XOUT and YOUT
switches to ensure that the resulting grid covers the whole sphere. I've realised that the
coordinates of the resulting grid are in terms of longitude and latitude. To ensure that | finished up
with a grid that covers the entire surface of a sphere | set XOUT to cover a range of +/- Pl radians,
and YOUT to cover +/- PI/2 radians.

,-1, 0, O
, 0, 1,-1
, 0,00
values = [255, 0, 100, 50, 0, 150]

maxOut = 2.0*Ipi

xout = FINDGEN(31) * 2.0*!pi / 30.0 - (2.0*!pi / 2.0)

yout = FINDGEN(31) * !pi / 30.0 - (Ipi / 2.0)

grid = GRIDDATA(X, v, z, values, /GRID, XOUT=xout, YOUT=yout, /SPHERE)

= O O

) 01
) 01
) -1l

— ——
(eoNeN)
[S I S i B |

N < X
I

Page 2 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6287
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34850&goto=82412#msg_82412
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82412
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

cglLoadCT, 33
cgWindow, 'cglmage’, grid, /KEEP_ASPECT

image = BYTSCL(grid)
MESH_OBJ, 4, vertices, polygons, REPLICATE(0.25, 101, 101)
oModel = OBJ_NEW('IDLgrModel’)
oPalette = OBJ_NEW('IDLgrPalette’)
oPalette -> LOADCT, 33
oPalette -> SetRGB, 255, 255, 255, 255
olmage = OBJ_NEW('IDLgrimage’, image, PALETTE = oPalette)
vector = FINDGEN(101)/100.
texure_coordinates = FLTARR(2, 101, 101)
texure_coordinates|[O, *, *] = vector # REPLICATE(1., 101)
texure_coordinates[1, *, *] = REPLICATE(1., 101) # vector
oPolygons = OBJ_NEW('IDLgrPolygon’, $
DATA = vertices, POLYGONS = polygons, $
COLOR = [255, 255, 255], $
TEXTURE_COORD = texure_coordinates, $
TEXTURE_MAP = olmage, /ITEXTURE_INTERP)
oModel -> ADD, oPolygons
oModel -> ROTATE, [1, 0, 0], -90
oModel -> ROTATE, [0, 1, 0], -90
XOBJVIEW, oModel

Regards,

David

Page 3 of 3 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

