Subject: Re: find missing elements in an array
Posted by havok2063 on Mon, 07 Jan 2013 15:37:44 GMT

View Forum Message <> Reply to Message

On Thursday, December 27, 2012 1:37:48 PM UTC-5, Brian Cherinka wrote:
> | have a peak-finding routine that finds, well...peaks, in a larger array. | know how many peaks
there are suppose to be, and | know the way they should be arranged, e.g.

1 set of 5 peaks, a gap, then a set of 10 peaks, a gap, then a set of 7 peaks etc....

V V VYV VYV

>
> and | know how many sets of peaks there are as well. But sometimes these peaks could be
missing and I'm trying to find a way to locate them based on nothing more than the input data, and

the expected values.
>

>

>

> so with the above example, | know there should be 22 peaks total in an array of data of say 30
elements, grouped in 3 sets of [5,10,7] peaks. | don't know where the peaks are apriori in the
large array of 30 elements or where they should be.

>

>

>

> If | find 20 peaks, | know there are 2 missing but | would like to find out which peaks they are, in
what sets, and where in the data array of 30 elements they are. Any ideas?

>

>

>

> | have a current method in place involving using the separations between found peaks but it is
bulky, and inconsistent. | am looking for alternative methods or help in making the method | do
have implemented more efficient. Below | will describe my currently attempted method.

>

If all peaks were found then the separations (element+1 - element) should be something like

seps = [5,4,5,6,15,11,10,11,12,12,12,11,11,10,14,4,4,5,6,4,5,4] 22 elements

VVVVYVYVYVYVYV

>
> and | know there should be 2 gaps that separate the 3 bundles ; the 15 and the 14 indicate gap

locations.
>

Page 1 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7695
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34907&goto=82603#msg_82603
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82603
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if some are missing it might look like

VVVVYVYV

> seps =[5,4,5,6,15,11,10,11,16,12,11,11,10,12,4,4,10,4,5,4] 20 elements ; here a missing
peak is in the 2nd and 3rd sets.

>

>

>

> | do have an array of expected separation between peaks in the sets, so [5,11,4] would be the
expected (or lets say median) separations in the above example. So | basically loop over each
set and look for regions in the seps array where the value is greater than the expected value;
basically looking for the gaps. If all the peaks are there | only find 2 gaps. In the above example
of 2 missing peaks, | find 4 gaps and can figure out that there are 2 missing peaks and where they
are and in which sets. I've had to refine it (and make it more complicated) where the separation
decreases from 1 set to the next, as in the above set 2 to set 3 transition. But it's still inconsistent.
It mostly works but if the separation values are different by 1 or 2, then my code isn't very robust.
The problems come in then with using equalities (LE,GE) vs not (LT,GT) and the fact the the
actual separations can vary up or down from the expected value.

V V V V

>

> My loop here is something like this, with, for the above example, nbundle=3, medsep=[5,11,4]
is the expected separation, ntot = [5,15,22] is the cumulative total of the number of peaks in each
set =[5,10,7]

test=-1

tmp=where(seps gt medsep[0]+2)
test=[test,tmp[where(tmp It ntot[0])]]
for bid=1,nbundle-2 do begin
nt=n_elements(test)

if bid eq 1 then begin

VVVVVVVVYVYVVYVYVYVYVYV

;refinement to handle the set 2 to 3 transition with the decrease which I've had to modify
slightly and is somewhat inconsistent
>

> tmp=where(sep[test[nt-1]+1:n_elements(sep)-1] le medsep[bid+1])+test[nt-1]+1

Page 2 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> tmp = tmp[where(tmp+(indgen(n_elements(tmp))) le ntot[bid]+1)]-2
>
>

if n_elements(tmp) gt 1 then tmp=tmp[n_elements(tmp)-1] ; in place in case it finds a few
elements that meet the condition
test=[test,tmp]
endif else begin
;original implemenation

tmp=where(sep[test[nt-1]+1:n_elements(sep)-1] ge medsep[bid]+2)+test[nt-1]+1

test=[test,tmp[where(tmp+(indgen(n_elements(tmp))+1) le ntot[bid])]]
endelse
endfor
gaps = test[where(test gt 0)]

ngaps = n_elements(gaps)

VVVVVVVVVVVVVVVVYVYVYVYV

>

> |t actually gets more complicated than this because | first look for missing peaks within sets,
and then | look for missing peaks at the edges of sets which involves very similar code, well the
same code to find gaps, and then different code to ascertain whether it's a missing edge or not. If
| could simplify these two stages down into one, that would be great as well.

>

>

>

> I'm looking for something that will be robust because this needs to be automated and be able to
handle any input slightly varying inputs.

>

>
>
> | think this about covers it. :)

>

>

>

> Can value_locate solve my problem? Any help would be appreciated. Thanks. :)

Does anyone have some thoughts on this? | could use some help on this problem. This is
becoming quite buggy and finicky and I've already added too many bandaids.

Page 3 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: find missing elements in an array
Posted by Craig Markwardt on Mon, 07 Jan 2013 20:02:22 GMT

View Forum Message <> Reply to Message

On Monday, January 7, 2013 10:37:44 AM UTC-5, Brian Cherinka wrote:

> On Thursday, December 27, 2012 1:37:48 PM UTC-5, Brian Cherinka wrote:

>

>> | have a peak-finding routine that finds, well...peaks, in a larger array. | know how many
peaks there are suppose to be, and | know the way they should be arranged, e.g.

>

>>

>

>>

>

>>

>

>> 1 set of 5 peaks, a gap, then a set of 10 peaks, a gap, then a set of 7 peaks etc....

>

>>

>

>>

>

>>

>

>> and | know how many sets of peaks there are as well. But sometimes these peaks could be
missing and I'm trying to find a way to locate them based on nothing more than the input data, and

the expected values.
>

>>
>

>>

>

>>

>

>> so with the above example, | know there should be 22 peaks total in an array of data of say 30
elements, grouped in 3 sets of [5,10,7] peaks. | don't know where the peaks are apriori in the
large array of 30 elements or where they should be.

>

>>

>

>>

>

>>

>

>> |If | find 20 peaks, | know there are 2 missing but | would like to find out which peaks they are,
in what sets, and where in the data array of 30 elements they are. Any ideas?

>

>>
>

Page 4 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34907&goto=82600#msg_82600
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82600
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>

>>

>

>> | have a current method in place involving using the separations between found peaks but it is
bulky, and inconsistent. | am looking for alternative methods or help in making the method | do
have implemented more efficient. Below | will describe my currently attempted method.

>

>>

>

>>

>

>>

>
>
>
>>

>

>>

>

>>

>

>> seps =[5,4,5,6,15,11,10,11,12,12,12,11,11,10,14,4,4,5,6,4,5,4] 22 elements

>

>>

>

>>

>

>>

>

>> and | know there should be 2 gaps that separate the 3 bundles ; the 15 and the 14 indicate
gap locations.

>

>>

>

>>

>

>>

>

>> if some are missing it might look like

>

>>

>

>>

>

>>

>

>> seps = [5,4,5,6,15,11,10,11,16,12,11,11,10,12,4,4,10,4,5,4] 20 elements ; here a missing

V

If all peaks were found then the separations (element+1 - element) should be something like

Page 5 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

peak is in the 2nd and 3rd sets.

>

>>

>

>>

>

>>

>

>> | do have an array of expected separation between peaks in the sets, so [5,11,4] would be the
expected (or lets say median) separations in the above example. So | basically loop over each
set and look for regions in the seps array where the value is greater than the expected value;
basically looking for the gaps. If all the peaks are there | only find 2 gaps. In the above example
of 2 missing peaks, | find 4 gaps and can figure out that there are 2 missing peaks and where they
are and in which sets. I've had to refine it (and make it more complicated) where the separation
decreases from 1 set to the next, as in the above set 2 to set 3 transition. But it's still inconsistent.
It mostly works but if the separation values are different by 1 or 2, then my code isn't very robust.
The problems come in then with using equalities (LE,GE) vs not (LT,GT) and the fact the the

actual separations can vary up or down from the expected value.
>

>>

>

>>

>

>>

>

>>

>

>>

>

>> My loop here is something like this, with, for the above example, nbundle=3, medsep=[5,11,4]
is the expected separation, ntot = [5,15,22] is the cumulative total of the number of peaks in each
set =[5,10,7]

>

>>

>

>>

>

>>

>

>> test=-1

>

>>

>

>> tmp=where(seps gt medsep[0]+2)
>

>>

>

>> test=[test,tmp[where(tmp It ntot[0])]]

Page 6 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>

>

>> for bid=1,nbundle-2 do begin

>

>>

>

>> nt=n_elements(test)

>

>>

>

>> if bid eq 1 then begin

>

>>

>

>> .refinement to handle the set 2 to 3 transition with the decrease which I've had to

modify slightly and is somewhat inconsistent
>

>>

>

>> tmp=where(sep[test[nt-1]+1:n_elements(sep)-1] le medsep[bid+1])+test[nt-1]+1
>

>>

>

>> tmp = tmp[where(tmp+(indgen(n_elements(tmp))) le ntot[bid]+1)]-2

>

>>

>

>> if n_elements(tmp) gt 1 then tmp=tmp[n_elements(tmp)-1] ; in place in case it finds a few
elements that meet the condition

>

>>

>

>> test=[test,tmp]

>

>>

>

>> endif else begin

>

>>

>

>> ;original implemenation

>

>>

>

>> tmp=where(sep[test[nt-1]+1:n_elements(sep)-1] ge medsep[bid]+2)+test[nt-1]+1
>

>>

Page 7 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>> test=[test,tmp[where(tmp+(indgen(n_elements(tmp))+1) le ntot[bid])]]
>

>>

>

>> endelse

>

>>

>

>> endfor

>

>>

>

>> gaps = test[where(test gt 0)]

>

>>

>

>> ngaps = n_elements(gaps)

>

>>

>

>>

>

>>

>

>> |t actually gets more complicated than this because | first look for missing peaks within sets,
and then I look for missing peaks at the edges of sets which involves very similar code, well the
same code to find gaps, and then different code to ascertain whether it's a missing edge or not. If
| could simplify these two stages down into one, that would be great as well.
>

>>

>

>>

>

>>

>

>> |'m looking for something that will be robust because this needs to be automated and be able
to handle any input slightly varying inputs.

>

>>

>

>>

>

>>

>

>> | think this about covers it. :)

>

>>

Page 8 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>

>

>>

>

>> Can value_locate solve my problem? Any help would be appreciated. Thanks. :)
>

>

>

> Does anyone have some thoughts on this? | could use some help on this problem. This is
becoming quite buggy and finicky and I've already added too many bandaids.

| wondered if you could try a cross-correlation technique. You know where your peaks should be,
SO you can create a template mask. You can slide this template across your data to find matches,
ala C_CORRELATE(). A missing peak wouldn't contribute to the correlation amplitude, but it
shouldn't subtract either. | don't know how bar-code readers work, but | suspect it is this way.

Best wishes,
Craig

Subject: Re: find missing elements in an array
Posted by havok2063 on Wed, 09 Jan 2013 20:56:47 GMT

View Forum Message <> Reply to Message

On Monday, January 7, 2013 3:02:22 PM UTC-5, Craig Markwardt wrote:

> On Monday, January 7, 2013 10:37:44 AM UTC-5, Brian Cherinka wrote:

>

>> On Thursday, December 27, 2012 1:37:48 PM UTC-5, Brian Cherinka wrote:
>

>>

>

>>> | have a peak-finding routine that finds, well...peaks, in a larger array. | know how many
peaks there are suppose to be, and | know the way they should be arranged, e.qg.
>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

Page 9 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7695
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=34907&goto=82673#msg_82673
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=82673
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>> 1 set of 5 peaks, a gap, then a set of 10 peaks, a gap, then a set of 7 peaks etc....

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> and | know how many sets of peaks there are as well. But sometimes these peaks could be
missing and I'm trying to find a way to locate them based on nothing more than the input data, and
the expected values.

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> s0 with the above example, | know there should be 22 peaks total in an array of data of say
30 elements, grouped in 3 sets of [5,10,7] peaks. | don't know where the peaks are apriori in the
large array of 30 elements or where they should be.

>

>>

>

>>>

>

>>

>

>>>

>

>>

Page 10 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>>

>

>>

>

>>> |f | find 20 peaks, | know there are 2 missing but | would like to find out which peaks they are,
in what sets, and where in the data array of 30 elements they are. Any ideas?

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> | have a current method in place involving using the separations between found peaks but it
is bulky, and inconsistent. | am looking for alternative methods or help in making the method | do
have implemented more efficient. Below | will describe my currently attempted method.

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>
>>
>
>>
>
>>
>
>>>
>
>>
>

\Y

If all peaks were found then the separations (element+1 - element) should be something like

Page 11 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>
>>
>
>>>
>
>>
>
>>> seps = [5,4,5,6,15,11,10,11,12,12,12,11,11,10,14,4,4,5,6,4,5,4] 22 elements
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>> and | know there should be 2 gaps that separate the 3 bundles ; the 15 and the 14 indicate
gap locations.
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>> |f some are missing it might look like
>
>>
>
>>>
>
>>

Page 12 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>>

>

>>

>

>>>

>

>>

>

>>> seps = [5,4,5,6,15,11,10,11,16,12,11,11,10,12,4,4,10,4,5,4] 20 elements ; here a missing
peak is in the 2nd and 3rd sets.

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> | do have an array of expected separation between peaks in the sets, so [5,11,4] would be
the expected (or lets say median) separations in the above example. So | basically loop over
each set and look for regions in the seps array where the value is greater than the expected
value; basically looking for the gaps. If all the peaks are there | only find 2 gaps. In the above
example of 2 missing peaks, | find 4 gaps and can figure out that there are 2 missing peaks and
where they are and in which sets. I've had to refine it (and make it more complicated) where the
separation decreases from 1 set to the next, as in the above set 2 to set 3 transition. But it's still
inconsistent. It mostly works but if the separation values are different by 1 or 2, then my code isn't
very robust. The problems come in then with using equalities (LE,GE) vs not (LT,GT) and the fact

the the actual separations can vary up or down from the expected value.
>

>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>

Page 13 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> My loop here is something like this, with, for the above example, nbundle=3,
medsep=[5,11,4] is the expected separation, ntot = [5,15,22] is the cumulative total of the number
of peaks in each set =[5,10,7]
>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> test=-1

>

>>

>

>>>

>

>>

>

>>> tmp=where(seps gt medsep[0]+2)
>

>>

>

>>>

>

>>

>

>>> test=[test,tmp[where(tmp It ntot[0])]]
>

>>

Page 14 of 19 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>>

>

>>

>

>>> for bid=1,nbundle-2 do begin
>

>>

>

>>>

>

>>

>

>>> nt=n_elements(test)

>

>>

>

>>>

>

>>

>

>>> f bid eq 1 then begin

>

>>

>

>>>

>

>>

>

>>> ;refinement to handle the set 2 to 3 transition with the decrease which I've had to
modify slightly and is somewhat inconsistent
>

>>

>

>>>

>

>>

>

>>> tmp=where(sep[test[nt-1]+1:n_elements(sep)-1] le medsep[bid+1])+test[nt-1]+1
>

>>

>

>>>

>

>>

>

>>> tmp = tmp[where(tmp+(indgen(n_elements(tmp))) le ntot[bid]+1)]-2
>

Page 15 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>

>

>>>

>

>>

>

>>> if n_elements(tmp) gt 1 then tmp=tmp[n_elements(tmp)-1] ; in place in case it finds a few
elements that meet the condition
>

>>

>

>>>

>

>>

>

>>> test=[test,tmp]

>

>>

>

>>>

>

>>

>

>>> endif else begin

>

>>

>

>>>

>

>>

>

>>> ;original implemenation
>

>>

>

>>>

>

>>

>

>>> tmp=where(sep[test[nt-1]+1:n_elements(sep)-1] ge medsep[bid]+2)+test[nt-1]+1
>

>>

>

>>>

>

>>

>

>>> test=[test,tmp[where(tmp+(indgen(n_elements(tmp))+1) le ntot[bid])]]

Page 16 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>

>

>>>

>

>>

>

>>> endelse
>

>>

>

>>>

>

>>

>

>>> endfor
>

>>

>

>>>

>

>>

>

>>> gaps = test[where(test gt 0)]
>

>>

>

>>>

>

>>

>

>>> ngaps = n_elements(gaps)
>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> |t actually gets more complicated than this because | first look for missing peaks within sets,

Page 17 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

and then | look for missing peaks at the edges of sets which involves very similar code, well the
same code to find gaps, and then different code to ascertain whether it's a missing edge or not. If
| could simplify these two stages down into one, that would be great as well.

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> |'m looking for something that will be robust because this needs to be automated and be able
to handle any input slightly varying inputs.

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>
>>
>
>>
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>

\Y

| think this about covers it. :)

Page 18 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>

>

>>> Can value_locate solve my problem? Any help would be appreciated. Thanks. :)

>

>>

>

>>

>

>>

>

>> Does anyone have some thoughts on this? | could use some help on this problem. This is
becoming quite buggy and finicky and I've already added too many bandaids.

>

>

>

> | wondered if you could try a cross-correlation technique. You know where your peaks should
be, so you can create a template mask. You can slide this template across your data to find
matches, a la C_CORRELATE(). A missing peak wouldn't contribute to the correlation amplitude,
but it shouldn't subtract either. | don't know how bar-code readers work, but | suspect it is this

Best wishes,

Well | don't actually know beforehand where the peaks are supposed to be. | just know how many
peaks there should be and how they are arranged (in so many groups of so many peaks with this
expected spacing). My first step is to find the supposed peaks and their locations then | do this
complicated business of looking for peaks missing if it doesn't find how many it's suppose to. |
guess | could build a model based off the first pass of finding supposed peaks.

Page 19 of 19 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

