
Subject: Re: 2D Savitzky-Golay derivative filter?
Posted by David Fanning on Sun, 03 Feb 2013 19:08:36 GMT
View Forum Message <> Reply to Message

David Grier writes:

> I would like to use Savitzky-Golay filters to calculate gradients of images.
> Before I roll my own code to calculate the filter coefficients, I was wondering
> if anyone here already had working routines that they would be willing to share.
>
> IDL's built-in SAVGOL routine only computes one-dimensional filters, and I need
> two-dimensional filters. Erik Rosolowsky's SAVGOL2D computes two-dimensional
> smoothing filters, but not two-dimensional derivative filters.
>
> Alternatively, is there an equivalently good IDL way to compute image gradients?
> A useful replacement would offer the noise rejection of Savitzky-Golay without
> suppressing peaks the way that SMOOTH() does.

The Sobel and Roberts functions are both 2D gradient or derivative
filters, or you can just roll your own and do some kind of Laplacian
filter:

 http://www.idlcoyote.com/ip_tips/sharpen.html

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: 2D Savitzky-Golay derivative filter?
Posted by dg86 on Sun, 03 Feb 2013 21:37:11 GMT
View Forum Message <> Reply to Message

Thanks David for following up.

Sobel and Roberts both use nearest-neighbor estimates for derivatives, and thus do a bad job of
computing gradients in noisy images. Savitzky-Golay does a much better job at rejecting noise
because it uses information over a larger domain. It might seem tempting just to smooth the
image to suppress noise before using a simple derivative operator. The problem is that
smoothing suppresses real features along with the noise. Savitzky-Golay is much better at
preserving features such as peaks and ridges.

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35064&goto=83093#msg_83093
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83093
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7637
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35064&goto=83092#msg_83092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

So, unless somebody already has an implementation, I might spend a couple of days rolling my
own.

All the best,

David

Subject: Re: 2D Savitzky-Golay derivative filter?
Posted by dg86 on Thu, 07 Feb 2013 02:19:01 GMT
View Forum Message <> Reply to Message

Dear Folks,

I append a routine that computes two-dimensional Savitzky-Golay filters for smoothing and taking
derivatives of images. This is based substantially on Erik Rosolowsky's savgol2d() routine, with
some code simplification and the addition of capabilities for computing derivatives of specified
order along each direction.

The benefit of Savitzky-Golay filters for image analysis is that they suppress noise while retaining
features of interest such as peaks and ridges. They therefore are particularly useful for computing
gradients of images with additive noise.

Comments and suggestions are warmly solicited.

All the best,

David

;+
; NAME:
; savgol2d()
;
; PURPOSE:
; Calculate two-dimensional Savitzky-Golay filters for smoothing images or
; computing their derivatives.
;
; CALLING SEQUENCE:
; filter = savgol2d(dim, order)
;
; INPUTS:
; dim: width of the filter [pixels]
; order: The degree of the polynomial
;
; KEYWORD PARAMETERS:
; dx: order of the derivative to compute in the x direction
; Default: 0 (no derivative)

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7637
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35064&goto=83103#msg_83103
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83103
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; dy: order of derivative to compute in the y direction
; Default: 0 (no derivative)
;
; OUTPUTS:
; filter: [dim,dim] Two-dimensional Savitzky-Golay filter
;
; EXAMPLE:
; IDL> dadx = convol(a, savgol2d(11, 6, dx = 1))
;
; MODIFICATION HISTORY:
; Algorithm based on SAVGOL2D:
; Written and documented
; Fri Apr 24 13:43:30 2009, Erik Rosolowsky <erosolo@A302357>
;
; 02/06/2013 Revised version by David G. Grier, New York University
;-

function savgol2d, dim, order, dx = dx, dy = dy

COMPILE_OPT IDL2

umsg = 'USAGE: filter = dgsavgol2d(dim, order)'

if n_params() ne 2 then begin
 message, umsg, /inf
 return, -1
endif
if ~isa(dim, /scalar, /number) then begin
 message, umsg, /inf
 message, 'DIM should be the integer width of the filter', /inf
 return, -1
endif

if ~isa(order, /scalar, /number) then begin
 message, umsg, /inf
 message, 'ORDER should be the integer order of the interpolaying polynomial', /inf
 return, -1
endif
if ~(order lt dim) then begin
 message, umsg, /inf
 message, 'ORDER should be less than DIM', /inf
 return, -1
endif

if ~isa(dx, /scalar, /number) then dx = 0
if ~isa(dy, /scalar, /number) then dy = 0
if dx lt 0 or dy lt 0 then begin
 message, umsg, /inf

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 message, 'DX and DY should be non-negative integers', /inf
 return, -1
endif
if (dx + dy ge order) then begin
 message, umsg, /inf
 message, 'DX + DY should not be greater than ORDER', /inf
 return, -1
endif

npts = dim^2

x = rebin(findgen(dim)-dim/2, dim, dim)
y = transpose(x)
x = reform(x, npts)
y = reform(y, npts)

Q = findgen((order+1)*(order+2)/2, npts)

n = 0
for nu = 0, order do begin
 ynu = y^nu
 for mu = 0, order-nu do begin
 Q[n++, *] = x^mu * ynu
 endfor
endfor

a = transpose(invert(Q # transpose(Q)) # Q)
filter = fltarr(npts)
b = [1., fltarr(npts-1)]
ndx = dx + (order + 1) * dy
for i = 0, npts-1 do begin
 filter[i] = (a ## b)[ndx]
 b = shift(b, 1)
endfor

return, reform(filter, dim, dim)
end

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

