
Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by Lajos Foldy on Thu, 21 Feb 2013 09:33:08 GMT
View Forum Message <> Reply to Message

On Thursday, February 21, 2013 5:58:36 AM UTC+1, Mark Hadfield wrote:
> The routine below creates up a long-integer array with one million elements, either as a variable
or as a tag embedded in a structure, then loads data values one at a time in a loop.
>
>
>
> On IDL 8.1.0 (Windows, 64-bit) loading the data into the bare array took 0.047s (who said IDL
loops were slow?) and loading the same data into the structure took 0.465s, as the following
session log indicates:
>
>
>
> IDL> mgh_test_structure, USE_STRUCTURE=0
>
> IDL 8.1: loading 1000000 long-integer values into bare array took 0.0470 s
>
> IDL> mgh_test_structure, USE_STRUCTURE=1
>
> IDL 8.1: loading 1000000 long-integer values into structure-field array took 0.4800 s
>
>
>
> On IDL 8.2.2, loading the data into the bare array took 0.050s and loading it into the structure
took so ridiculously long that I aborted it and tried again with a smaller number, eventually finding
that 10000 (10^4) elements took 0.062s and 100000 (10^5) took 7.56s
>
>
>
> IDL> mgh_test_structure, USE_STRUCTURE=0
>
> IDL 8.2.2: loading 1000000 long-integer values into bare array took 0.0500 s
>
> IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=10000
>
> IDL 8.2.2: loading 10000 long-integer values into structure-field array took 0.0620 s
>
> IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=100000
>
> IDL 8.2.2: loading 100000 long-integer values into structure-field array took 7.6540 s
>
>
>
> The super-linear slowdown with IDL 8.2.2 suggests that a temporary copy of the data is being
produced every time the data is accessed. Why would this be? Is there a syntax that will avoid it?

Page 1 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7456
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83340#msg_83340
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83340
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>
> I ran into this problem with some actual code of mine and rewrote it so that the structure is built
after the data are loaded, not before. (This is probably not a bad thing to do in any case.) I wonder
if all such cases can be avoided with a simple rewrite?
>
>
>
>
>
> -- ------
>
>
>
> pro mgh_test_structure, N_DATA=n_data, USE_STRUCTURE=use_structure
>
>
>
> compile_opt DEFINT32
>
> compile_opt STRICTARR
>
> compile_opt STRICTARRSUBS
>
> compile_opt LOGICAL_PREDICATE
>
>
>
> if n_elements(n_data) eq 0 then n_data = 1000000
>
>
>
> if keyword_set(use_structure) then begin
>
> my_struct = {data: lonarr(n_data)}
>
> t0 = systime(1)
>
> for i=0,n_data-1 do my_struct.data[i] = i
>
> t1 = systime(1)
>
> fmt = '(%"IDL %s: loading %d long-integer values into ' + $
>
> 'structure-field array took %0.4f s")'
>
> print, FORMAT=fmt, !version.release, n_data, t1-t0

Page 2 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> endif else begin
>
> my_data = lonarr(n_data)
>
> t0 = systime(1)
>
> for i=0,n_data-1 do my_data[i] = i
>
> t1 = systime(1)
>
> fmt = '(%"IDL %s: loading %d long-integer values into ' + $
>
> 'bare array took %0.4f s")'
>
> print, FORMAT=fmt, !version.release, n_data, t1-t0
>
> endelse
>
>
>
> end

This is probably related to the dot operator overloading: a.b can be object.method or struct.tag,
and it can be resolved only at run time.

regards,
Lajos

Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by m_schellens on Thu, 21 Feb 2013 13:15:33 GMT
View Forum Message <> Reply to Message

On Feb 21, 10:33 am, fawltylangu...@gmail.com wrote:
> On Thursday, February 21, 2013 5:58:36 AM UTC+1, Mark Hadfield wrote:
>> The routine below creates up a long-integer array with one million elements, either as a
variable or as a tag embedded in a structure, then loads data values one at a time in a loop.
>
>> On IDL 8.1.0 (Windows, 64-bit) loading the data into the bare array took 0.047s (who said IDL
loops were slow?) and loading the same data into the structure took 0.465s, as the following
session log indicates:
>
>> IDL> mgh_test_structure, USE_STRUCTURE=0
>
>> IDL 8.1: loading 1000000 long-integer values into bare array took 0.0470 s
>
>> IDL> mgh_test_structure, USE_STRUCTURE=1

Page 3 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5313
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83339#msg_83339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83339
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> IDL 8.1: loading 1000000 long-integer values into structure-field array took 0.4800 s
>
>> On IDL 8.2.2, loading the data into the bare array took 0.050s and loading it into the structure
took so ridiculously long that I aborted it and tried again with a smaller number, eventually finding
that 10000 (10^4) elements took 0.062s and 100000 (10^5) took 7.56s
>
>> IDL> mgh_test_structure, USE_STRUCTURE=0
>
>> IDL 8.2.2: loading 1000000 long-integer values into bare array took 0.0500 s
>
>> IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=10000
>
>> IDL 8.2.2: loading 10000 long-integer values into structure-field array took 0.0620 s
>
>> IDL> mgh_test_structure, USE_STRUCTURE=1, N_DATA=100000
>
>> IDL 8.2.2: loading 100000 long-integer values into structure-field array took 7.6540 s
>
>> The super-linear slowdown with IDL 8.2.2 suggests that a temporary copy of the data is being
produced every time the data is accessed. Why would this be? Is there a syntax that will avoid it?
>
>> I ran into this problem with some actual code of mine and rewrote it so that the structure is
built after the data are loaded, not before. (This is probably not a bad thing to do in any case.) I
wonder if all such cases can be avoided with a simple rewrite?
>
>> -- ------
>
>> pro mgh_test_structure, N_DATA=n_data, USE_STRUCTURE=use_structure
>
>> compile_opt DEFINT32
>
>> compile_opt STRICTARR
>
>> compile_opt STRICTARRSUBS
>
>> compile_opt LOGICAL_PREDICATE
>
>> if n_elements(n_data) eq 0 then n_data = 1000000
>
>> if keyword_set(use_structure) then begin
>
>> my_struct = {data: lonarr(n_data)}
>
>> t0 = systime(1)
>
>> for i=0,n_data-1 do my_struct.data[i] = i
>

Page 4 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> t1 = systime(1)
>
>> fmt = '(%"IDL %s: loading %d long-integer values into ' + $
>
>> 'structure-field array took %0.4f s")'
>
>> print, FORMAT=fmt, !version.release, n_data, t1-t0
>
>> endif else begin
>
>> my_data = lonarr(n_data)
>
>> t0 = systime(1)
>
>> for i=0,n_data-1 do my_data[i] = i
>
>> t1 = systime(1)
>
>> fmt = '(%"IDL %s: loading %d long-integer values into ' + $
>
>> 'bare array took %0.4f s")'
>
>> print, FORMAT=fmt, !version.release, n_data, t1-t0
>
>> endelse
>
>> end
>
> This is probably related to the dot operator overloading: a.b can be object.method or struct.tag,
and it can be resolved only at run time.
>
> regards,
> Lajos

But of course you know that the code used here:

my_struct.data[i] = i

is unambiguous for the dot operator and can be resolved at compile
time.

Not sure about the [] operator though (_overloadBracketsLeftSide).
If IDL 8.2.2 considers this overload for objects within structures
(which IDL 8.1 doesn't), that could be a reason.

Regards,
Marc

Page 5 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by markb77 on Thu, 21 Feb 2013 15:17:15 GMT
View Forum Message <> Reply to Message

that's scary. I would hate to inadvertently use a structure like this
in my code which could cause such a slowdown. What changed between
IDL 8.1 and 8.2 which could account for this? Even in 8.1 we already
have the 'dot' operator for accessing object methods...?

any response from Excelis?

Mark

Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by Helder Marchetto on Thu, 21 Feb 2013 15:58:14 GMT
View Forum Message <> Reply to Message

On Thursday, February 21, 2013 4:17:15 PM UTC+1, markbates wrote:
> that's scary. I would hate to inadvertently use a structure like this
>
> in my code which could cause such a slowdown. What changed between
>
> IDL 8.1 and 8.2 which could account for this? Even in 8.1 we already
>
> have the 'dot' operator for accessing object methods...?
>
>
>
> any response from Excelis?
>
>
>
> Mark

Dear Mark,
some time ago I ran into a problem with objects vs structures and Chris Torrence from IDL just
mentioned that this was corrected starting with version 8.2.1.
See the post: https://groups.google.com/d/msg/comp.lang.idl-pvwave/uz886Nk
HqMo/a5WsD7sz1bEJ

So basically I found that calling a structure with an object reference could be done only like this
PRINT, (self.FirstObj).Var1
where FirstObj is a property of the object that points to another object.
In IDL 8.2.1 you may use this syntax:
PRINT, self.FirstObj.Var1

Yes, so there is a difference between versions earlier than 8.2.0 and starting from 8.2.1 the new

Page 6 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5818
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83338#msg_83338
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83338
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7447
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83337#msg_83337
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83337
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

syntax is accepted and therefore at run time it has to be checked if it is an object.method or
structure.tag

Hope it helps in finding out what has changed in the different IDL versions,
Helder

Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by markb77 on Thu, 21 Feb 2013 16:35:51 GMT
View Forum Message <> Reply to Message

The ambiguity of the dot operator is starting to look like a mistake.
If it's going to impact the performance of the language in terms of
speed, perhaps we need a flag to go back to -> for object method
calls.

hopefully this is a bug with a simple fix.

Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by Lajos Foldy on Thu, 21 Feb 2013 16:44:08 GMT
View Forum Message <> Reply to Message

On Thursday, February 21, 2013 2:15:33 PM UTC+1, mschellens wrote:
>
> But of course you know that the code used here:
>
> my_struct.data[i] = i
>
> is unambiguous for the dot operator and can be resolved at compile
>
> time.
>
>
>
> Not sure about the [] operator though (_overloadBracketsLeftSide).
>
> If IDL 8.2.2 considers this overload for objects within structures
>
> (which IDL 8.1 doesn't), that could be a reason.
>
>
>
> Regards,
>
> Marc

Page 7 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5818
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83335#msg_83335
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83335
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7456
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83334#msg_83334
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83334
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Yes, you are right. a.b(c) was in my mind, which really needs run time resolution.

regards,
Lajos

Subject: Re: Storing data in an array inside a structure MUCH slower in IDL 8.2.2
Posted by chris_torrence@NOSPAM on Thu, 21 Feb 2013 18:11:24 GMT
View Forum Message <> Reply to Message

Hi all,

I can reproduce the problem using Mark's code. As you pointed out, this is indeed because of
operator overloading.

In IDL 8.2.1 and earlier, if you tried to do "mystruct.data[i]", and the "data" field was an object (say
a HASH), then IDL would throw an error. The only way you could access the index "i" for an
overloaded object was to use parentheses, like "(mystruct.data)[i]".

In IDL 8.2.2 we now check if that field is an overloaded object, and then either do regular array
indexing or operator overloading. This eliminates the need for the parentheses. Unfortunately, the
check for the overloaded object was being done in a naive, expensive way.

I have fixed the bug, and the fix will be in the next IDL service pack.

With the fix:
IDL> mgh_test_structure, N_DATA=1000000,/use
IDL 8.2.3: loading 1000000 long-integer values into structure-field array took 0.4820 s

Thanks for finding the bug and providing such a simple reproduce case!

-Chris
ExelisVIS

Page 8 of 8 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35153&goto=83333#msg_83333
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83333
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

