Subject: Storing INULL in struct
Posted by tom.grydeland on Tue, 12 Mar 2013 12:09:37 GMT

View Forum Message <> Reply to Message

Any reason | shouldn't expect this to work?
IDL> help, { foo: Inull }

T

Subject: Re: Storing INULL in struct
Posted by lecacheux.alain on Fri, 15 Mar 2013 13:31:18 GMT

View Forum Message <> Reply to Message

Le vendredi 15 mars 2013 09:10:45 UTC+1, Tom Grydeland a écrit :
>> On 3/13/13 2:17 am, Tom Grydeland wrote:

>

>>> And it would be useful _to me_ if | could put a INULL in a struct.

>

>>> |'m using the struct for UVALUES in widgets, and it would be nice if
>

>>> they allowed _any_well-defined IDL value.

>

>

>

> On Wednesday, March 13, 2013 2:46:17 PM UTC, Mike Galloy wrote:
>

>> But Inull is undefined:

>

>

>

> Not so undefined that | cannot assign it to a variable, or return it from a function, or use it as a
good 'missing value' indicator in most cases. It is also pretty damn useful if you want to build an
array by parts (although, as Bob pointed out, | could use a LIST for that last case).

>

>

>

> See, | was trying to stash away an arbitrary value (provided by the user for their later retrieval)
under a given tag in a structure, and | didn't want to restrict what values they were allowed to use.
>

>

>

> So instead of using a struct { internal: <whatever>, public: <your value here> }, | thought | could
use a List(<whatever>, <your value here>), but that didn't work either, since I'm not allowed to
assign to a struct that lives in a List.

>

>

Page 1 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83531#msg_83531
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83531
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83638#msg_83638
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83638
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> ¢ = List({ t: 0})
IDL> print, c[0].t
0
IDL> c[0].t= 1
% Attempt to store into an expression: Structure reference.

% Execution halted at: $MAIN$

VVVVVVVVVVVVVVVYVYVYVYV

vV V V
V
=
=
(¢}

>
> T

Are'nt you mixing three different concepts: undefined value, unassigned value and missing data ?
In IDL, you can use : INull, New_Ptr() and !'Values.F_NAN, respectively.

alx.

Subject: Re: Storing !NULL in struct
Posted by Lajos Foldy on Fri, 15 Mar 2013 14:02:19 GMT

View Forum Message <> Reply to Message

On Friday, March 15, 2013 9:10:45 AM UTC+1, Tom Grydeland wrote:

>

> IDL> c = List({ t: 0})

> IDL> print, c[0].t

> 0

> IDL>c[0].t=1

> % Attempt to store into an expression: Structure reference.
> 0 Execution halted at: SMAINS$

This is a bug IMHO. This construct should work as a structure array works (LIST is a pointer array
in disguise):

IDL> a=replicate({t:0}, 1)

Page 2 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7456
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83636#msg_83636
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83636
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> a[0].t=1
IDL> print, a[0].t
1

regards,
Lajos

Subject: Re: Storing !NULL in struct
Posted by kagoldberg on Fri, 15 Mar 2013 16:40:55 GMT

View Forum Message <> Reply to Message

It's not a bug (IMHO) because structures are rigid types after they are defined. If you use a
pointer, you can have the same functionality you seek, and do anything you want with any type of
data, after the structure is defined.

Subject: Re: Storing !NULL in struct
Posted by Michael Galloy on Fri, 15 Mar 2013 18:51:51 GMT

View Forum Message <> Reply to Message

On 3/15/13 2:10 AM, Tom Grydeland wrote:
> On Wednesday, March 13, 2013 2:46:17 PM UTC, Mike Galloy wrote:
>> But !null is undefined:

>
> Not so undefined that | cannot assign it to a variable, or return it

> from a function, or use it as a good 'missing value' indicator in

> most cases. ltis also pretty damn useful if you want to build an

> array by parts (although, as Bob pointed out, | could use a LIST for
> that last case).

Nothing is so undefined that you can't return it from a function. Inull

is special in that you can assign it to a variable, so assigning it to a
structure element would make some sense. It's just that | think the
typical use case for a structure is not to rebuild the whole thing when
you want to change a value (like you would if you switched the value
from undefined type to any other type).

Why not a HASH? It's made for more dynamic situations like this.
Mike

Michael Galloy

www.michaelgalloy.com

Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician

Tech-X Corporation

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7668
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83635#msg_83635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83629#msg_83629
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83629
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Storing INULL in struct
Posted by chris_torrence@NOSPAM on Fri, 15 Mar 2013 20:40:56 GMT

View Forum Message <> Reply to Message

Hi all,

Not to stir the pot some more, but | actually looked into supporting 'null in IDL structures. The
deal-killer was that IDL structures are supposed to map directly to C structures. So you can
theoretically take an IDL structure, write it out to a file, and then define a corresponding structure
in C code and read it into that program. So having a !null field would break that compatibility.

Also, there were major issues of memory management. For named structures, if you allowed 'null
as a field, and then you decided to assign it a value, you would need to track down every instance
of that named structure and re-define it. Even if you only allowed !null for anonymous structures,
you could have an array of those structures. If you then defined the !null field in the first structure
of the array to have some value, you would have to copy the entire array, and reallocate every
structure to have the new value.

In short, it was just too much of a code overhaul and backwards compatibility risk to allow !null in
structures.

As Mike suggests, perhaps HASH is the way to go.
Cheers,

Chris
ExelisVIS

Subject: Re: Storing INULL in struct
Posted by penteado on Fri, 15 Mar 2013 23:14:14 GMT

View Forum Message <> Reply to Message

| think a lot about this subject.
The problem with doing
c[0].t=1

is in the way the overloaded brackets are implemented. When c[0] gets
the ".t", there is a function call to list's

_overloadBracketsRightSide, which just returns a value (the

structure). Since it is a value (not a variable), no values can be
assigned to it. To put this another way, the line above is the same as
trying to do

a=0
a+9=5

Page 4 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83627#msg_83627
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83627
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83617#msg_83617
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83617
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

One way to sort of get around this would be to put in the list
pointers to the structures:

IDL> c=list(ptr_new({t:0}))
IDL> print,(*c[0]).t
0
IDL> (*c[0]).t=9
IDL> print,(*c[0]).t
9

Or one could make a derived list class that stored the elements by
pointers, and returned the pointers, so that one would not need to
keep doing ptr_new() everytime something is added to the list.

It could even return either the value or a pointer to it, depending on
how the brackets are used: If it gets an integer index, it returns the
element, as usual; if it gets a floating point index, it returns the
pointer to the element. Then it could be used like:

IDL> c=listbypointers({t:0})
IDL> print,c[0].t
0
IDL> print,(*c[0.]).t
0
IDL> (*c[0.]).t=9
IDL> print,c[0].t
9

To make things like
c[0].t=1

valid, the IDL interpreter would have to change, so that when an
object with brackets shows up in the left side of the assignment but

it is qualified (with the .t, in this case) the object's
_overloadBracketsRightSide would be called, to return a variable, then
whatever that assignment does to the variable is performed, then at
the end the variable is passed back to the object's
_overloadBracketsLeftSide.

On Mar 15, 11:02 am, fawltylangu...@gmail.com wrote:

> On Friday, March 15, 2013 9:10:45 AM UTC+1, Tom Grydeland wrote:
>

>> |DL> ¢ = List({ t: 0})

>> |DL> print, c[0].t

>> 0

>> [IDL>c[0].t=1

V V

V

Page 5 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> 9 Attempt to store into an expression: Structure reference.

>> % Execution halted at: SMAIN$

>

> This is a bug IMHO. This construct should work as a structure array works (LIST is a pointer
array in disguise):

>
> |IDL> a=replicate({t:0}, 1)
> |IDL> a[0].t=1

> IDL> print, a[0].t

> 1

>

> regards,

> Lajos

Subject: Re: Storing INULL in struct
Posted by tom.grydeland on Mon, 18 Mar 2013 09:00:58 GMT

View Forum Message <> Reply to Message

On Friday, March 15, 2013 8:40:56 PM UTC, Chris Torrence wrote:
> Hi all,

> Not to stir the pot some more [...]

Not at all, it is good to hear the rationale behind decisions such as this one.

> The deal-killer was that IDL structures are supposed to map directly to C structures. [...]
I'll buy that.

> As Mike suggests, perhaps HASH is the way to go.

Either of HASH or LIST would be perfectly fine, if | were able to even assign to already-known
fields of structs stored inside them:

IDL> h = hash('f', {t:0})
IDL> help, h
H HASH <ID=198 NELEMENTS=1>
IDL> print, h['f].t
0
IDL> h['f].t=1
% Attempt to store into an expression: Structure reference.
% Execution halted at: SMAIN$
IDL> ¢ = list({t:0})
IDL> print, c[0].t
0
IDL> c[0].t=1
% Attempt to store into an expression: Structure reference.

Page 6 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83609#msg_83609
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83609
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Execution halted at: $SMAIN$

It's not that | cannot imagine a way of working around this, but it seems to defeat the purpose of
providing high-level data structures.

> Chris

T

Subject: Re: Storing INULL in struct
Posted by lecacheux.alain on Mon, 18 Mar 2013 09:27:31 GMT

View Forum Message <> Reply to Message

Le lundi 18 mars 2013 10:00:58 UTC+1, Tom Grydeland a écrit :
> On Friday, March 15, 2013 8:40:56 PM UTC, Chris Torrence wrote:

>
>> Hi all,

>

>

>

>> Not to stir the pot some more [...]

>

>

>

> Not at all, it is good to hear the rationale behind decisions such as this one.
>

>

>

>> The deal-killer was that IDL structures are supposed to map directly to C structures. [...]
>

>

>

> I'll buy that.

>

>

>

>> As Mike suggests, perhaps HASH is the way to go.

>

>

>

> Either of HASH or LIST would be perfectly fine, if | were able to even assign to already-known
fields of structs stored inside them:

>

>

>

> IDL> h = hash('f', {t:0})

Page 7 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83608#msg_83608
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83608
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> help, h
H HASH <ID=198 NELEMENTS=1>
IDL> print, h['f].t
0
IDL> h['f].t =1
% Attempt to store into an expression: Structure reference.
% Execution halted at: SMAIN$
IDL> ¢ = list({t:0})
IDL> print, c[0].t
0
IDL> c[0].t = 1
% Attempt to store into an expression: Structure reference.

% Execution halted at: $MAIN$

It's not that | cannot imagine a way of working around this, but it seems to defeat the purpose of
roviding high-level data structures.

VVVTSVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYVYV

>> Chris
>

>

>

> --T

IDL> h = hash('f', {t:0})
IDL> help, h
H HASH <ID=1 NELEMENTS=1>
IDL> print, h['f].t
0
IDL> h['f] = {t:1}

Page 8 of 19 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> print, h['f].t
1

alx.

Subject: Re: Storing !NULL in struct
Posted by tom.grydeland on Mon, 18 Mar 2013 11:41:14 GMT

View Forum Message <> Reply to Message

On Monday, March 18, 2013 9:27:31 AM UTC, alx wrote:

> Le lundi 18 mars 2013 10:00:58 UTC+1, Tom Grydeland a écrit :
>> Either of HASH or LIST would be perfectly fine, if | were able to even assign to already-known
fields of structs stored inside them:

>> |t's not that | cannot imagine a way of working around this, but it seems to defeat the purpose
of providing high-level data structures.

IDL> h = hash('f, {t:0})
IDL> help, h
H HASH <ID=1 NELEMENTS=1>
IDL> print, h['f].t
0
IDL> h['f] = {t:1}
IDL> print, h['f].t
1

V VVVVVYVYV

> alx.
Very good, so you, too, understand how to work _around__ this problem.

Do you also understand why | referred to this as defeating the purpose of high-level data
structures?

T

Subject: Re: Storing INULL in struct
Posted by lecacheux.alain on Mon, 18 Mar 2013 12:20:51 GMT

View Forum Message <> Reply to Message

Le lundi 18 mars 2013 12:41:14 UTC+1, Tom Grydeland a écrit :
> On Monday, March 18, 2013 9:27:31 AM UTC, alx wrote:

>

>

Page 9 of 19 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83606#msg_83606
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83606
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83605#msg_83605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>> Le lundi 18 mars 2013 10:00:58 UTC+1, Tom Grydeland a écrit :

>

>>> Either of HASH or LIST would be perfectly fine, if | were able to even assign to
already-known fields of structs stored inside them:

>

>

>

>>> |t's not that | cannot imagine a way of working around this, but it seems to defeat the purpose
of providing high-level data structures.

>

>

>

>> |DL> h = hash('f, {t:0})

>

>> |IDL> help, h

>

>> H HASH <ID=1 NELEMENTS=1>

>

>> |DL> print, h['f'].t

>

>> 0

>

>> |DL> h['f] = {t:1}

>> |DL> print, h['f'].t

>> 1

V V.V VYV

V
V

alx.

Very good, so you, too, understand how to work _around__ this problem.

VVVVYVYV

>
> Do you also understand why | referred to this as defeating the purpose of high-level data
structures?

>

>

>

> --T

Page 10 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Do you also understand why | referred to this as defeating the purpose of high-level data
structures?

No, I do'nt. | do not understand what you mean by "high-level" data structures.

As previously said, IDL structures are defined like C structures: each field being defined "by
value". If you want more flexibility, you can (and you must) use pointers (each field is then defined
"by reference").

What else ?

alx.

Subject: Re: Storing INULL in struct
Posted by tom.grydeland on Mon, 18 Mar 2013 12:40:38 GMT

View Forum Message <> Reply to Message

On Monday, March 18, 2013 12:20:51 PM UTC, alx wrote:

>> Do you also understand why I referred to this as defeating the purpose of high-level data
structures?

> No, | do'nt. | do not understand what you mean by "high-level” data structures.

Basically, LISTs and HASHes. These are capable of storing arbitrary values in each value slot,
thereby giving you the opportunity to create arbitrarily complex nested structures. The problem is
that values stored in these structures cannot easily be accessed and modified, which defeats the
purpose of having these structures in the first place.

> As previously said, IDL structures are defined like C structures: each field being defined "by
value". If you want more flexibility, you can (and you must) use pointers (each field is then defined
"by reference").

This point has been made several times already, and in my reply to Chris Torrence, | granted that
the reasons behind this decision is valid, even if it has a consequence that seems silly by itself.

What | was demonstrating in the message you replied to, however, is a different point. When a
struct is stored in a LIST or a HASH, you cannot change its values, while a struct referred to by a
pointer _can_ be modified.

Consider this simple example (and before you suggest workarounds, please consider that |
already said | understand how to work around these issues, _AND __ that I'm deliberately
constructing _simple_ examples, so that the points stand out more clearly, but that the cases |
intend to deal with are going to be much more involved, and nested much more deeply than what
I'm showing you here):

IDL> .run

- pro modify, s
- sfoo+=1

- end

Page 11 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83604#msg_83604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83604
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Compiled module: MODIFY.
IDL> s = {foo:0}

IDL> modify, s

IDL> help, s

** Structure <23d4ed8>, 1 tags, length=4, data length=4, refs=1:
FOO LONG 1

;; SO a structure stored in a simple variable can be MODIFY'ed

IDL> p = ptr_new({foo:0})

IDL> modify, *p

IDL> help, *p

** Structure <23d4b08>, 1 tags, length=4, data length=4, refs=1.:
FOO LONG 1

;; Similarly, a structure stored behind a pointer can be MODIFY'ed

IDL> L = list({foo:0})

IDL> help, L[O]

** Structure <23ae368>, 1 tags, length=4, data length=4, refs=2:
FOO LONG 0

IDL> modify, L[O]

IDL> help, L[O]

** Structure <23ae368>, 1 tags, length=4, data length=4, refs=2:
FOO LONG 0

;; while a structure stored in a LIST _cannot_ be MODIFY'ed, and my example fails _without
warning_.

Do you see _now_ what | mean by defeating the purpose?
> alx.

T

Subject: Re: Storing INULL in struct
Posted by Michael Galloy on Mon, 18 Mar 2013 16:48:54 GMT

View Forum Message <> Reply to Message

On 3/18/13 6:40 AM, Tom Grydeland wrote:

> On Monday, March 18, 2013 12:20:51 PM UTC, alx wrote:

>

>>> Do you also understand why | referred to this as defeating the purpose of high-level data
structures?

>

>> No, | do'nt. | do not understand what you mean by "high-level" data structures.

>

Page 12 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83599#msg_83599
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83599
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Basically, LISTs and HASHes. These are capable of storing arbitrary values in each value slot,
thereby giving you the opportunity to create arbitrarily complex nested structures. The problem is
that values stored in these structures cannot easily be accessed and modified, which defeats the
purpose of having these structures in the first place.

>

>> As previously said, IDL structures are defined like C structures: each field being defined "by
value". If you want more flexibility, you can (and you must) use pointers (each field is then defined
"by reference").

>

> This point has been made several times already, and in my reply to Chris Torrence, | granted
that the reasons behind this decision is valid, even if it has a consequence that seems silly by
itself.

>

> What | was demonstrating in the message you replied to, however, is a different point. When a
struct is stored in a LIST or a HASH, you cannot change its values, while a struct referred to by a
pointer _can_ be modified.

>

> Consider this simple example (and before you suggest workarounds, please consider that |
already said | understand how to work around these issues, _AND __ that I'm deliberately
constructing _simple_ examples, so that the points stand out more clearly, but that the cases |
intend to deal with are going to be much more involved, and nested much more deeply than what
I'm showing you here):

>

IDL> .run

- pro modify, s

- s.foo+=1

- end

% Compiled module: MODIFY.

IDL> s = {foo:0}

IDL> modify, s

IDL> help, s

** Structure <23d4ed8>, 1 tags, length=4, data length=4, refs=1.:
FOO LONG 1

;; SO a structure stored in a simple variable can be MODIFY'ed

IDL> p = ptr_new({foo:0})
IDL> modify, *p

IDL> help, *p
** Structure <23d4b08>, 1 tags, length=4, data length=4, refs=1:
FOO LONG 1

;; Similarly, a structure stored behind a pointer can be MODIFY'ed

IDL> L = list({foo:0})

IDL> help, L[0]

** Structure <23ae368>, 1 tags, length=4, data length=4, refs=2:
FOO LONG 0

VVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Page 13 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> |IDL> modify, L[0]

> IDL> help, L[0]

> ** Structure <23ae368>, 1 tags, length=4, data length=4, refs=2:
> FOO LONG 0

>

> ;; while a structure stored in a LIST _cannot_ be MODIFY'ed, and my example fails _without
warning_.

>

> Do you see _now_ what | mean by defeating the purpose?

>

>> alx.

>

> --T

>

| think what you are showing here is that any variable passed by value
does not end up modified at the calling level. It doesn't work for
arrays of structures either:

IDL> sarr = replicate({ foo: 0 }, 10)
IDL> modify, sarr[0]

IDL> print, sarr[0O]

{ 0

s and *p are named variables, but L[0] and sarr[0] are not. s and *p are
passed by reference, L[0] and sarr[0] have pass by value semantics.

My hash suggestion was to replace your structure with a hash:

IDL> ¢ = list(hash('t', 0))
IDL> print, (c[O])['t']
0

IDL> (c[O]D[t]=1
IDL> print, (c[O])['t]
1

Mike

Michael Galloy

www.michaelgalloy.com

Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician

Tech-X Corporation

Subject: Re: Storing !NULL in struct
Posted by Yngvar Larsen on Mon, 18 Mar 2013 18:26:51 GMT

Page 14 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

On Monday, 18 March 2013 17:48:54 UTC+1, Mike Galloy wrote:
> On 3/18/13 6:40 AM, Tom Grydeland wrote:
>

>

> | think what you are showing here is that any variable passed by value
> does not end up modified at the calling level.

Right.
It doesn't work for arrays of structures either:

>
>
> IDL> sarr = replicate({ foo: 0}, 10)

> |IDL> modify, sarr[0]

> IDL> print, sarr[0]

>{ 0

Yes, but you can still modify an element, or even a range of elements, of a structure array at your
current calling level:

IDL> sarr[0].foo = 4
IDL> print, sarr[0].foo
4
IDL> sarr[3:5].foo = 4
IDL> print, sarr[0:6].foo
4 0 0 4 4 4 0

This is not the case for lists, as already discussed:

IDL> larr = list(length=10) & for n=0, 9 do larr[n] = {foo: 0}
IDL> print, larr[0].foo

0
IDL> larr[0].foo = 4
% Attempt to store into an expression: Structure reference.
% Execution halted at: $MAIN$

| fail to see why the latter isn't allowed. This means that if you still want to modify structures within
your list, you need to do something like this

IDL> tmp = larr[0]

IDL> tmp.foo = 4

IDL> larr[0] = tmp

IDL> print, larr[0].foo
4

This seems silly to me. What is the purpose of not allowing this?

Page 15 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83597#msg_83597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83597
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Switching to hash tables instead of structures as general purpose data structure is of course a
very good strategy in 2013, but | have at least 10 years worth of legacy code which already
heavily (mis-)uses the anonymous structure as a "hash table light" with case insensitive keys.

Yngvar

Subject: Re: Storing !NULL in struct
Posted by Michael Galloy on Mon, 18 Mar 2013 19:33:47 GMT

View Forum Message <> Reply to Message

On 3/18/13 12:26 PM, Yngvar Larsen wrote:
This is not the case for lists, as already discussed:

IDL> larr = list(length=10) & for n=0, 9 do larr[n] = {foo: 0}
IDL> print, larr[0].foo

0
IDL> larr[0].foo = 4
% Attempt to store into an expression: Structure reference.
% Execution halted at: $MAIN$

VVVVYVVYVYVYVYVYV

| fail to see why the latter isn't allowed.
| agree.

> This means that if you still want to modify structures within your list, you need to do something
like this
>
IDL> tmp = larr[0]
IDL> tmp.foo = 4
IDL> larr[0] = tmp
IDL> print, larr[0].foo
4

>
>
>
>
>
>
> This seems silly to me. What is the purpose of not allowing this?

>

> Switching to hash tables instead of structures as general purpose data structure is of course a
very good strategy in 2013, but | have at least 10 years worth of legacy code which already
heavily (mis-)uses the anonymous structure as a "hash table light" with case insensitive keys.

| agree here as well. But, | do find it difficult to use new IDL
features for long after they are no longer new since so many users do
not have the latest version of IDL.

Mike

Page 16 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83596#msg_83596
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83596
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Michael Galloy

www.michaelgalloy.com

Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician

Tech-X Corporation

Subject: Re: Storing !NULL in struct
Posted by Bob[4] on Tue, 19 Mar 2013 03:26:50 GMT

View Forum Message <> Reply to Message

On Monday, March 18, 2013 12:26:51 PM UTC-6, Yngvar Larsen wrote:
> On Monday, 18 March 2013 17:48:54 UTC+1, Mike Galloy wrote:

>

>> On 3/18/13 6:40 AM, Tom Grydeland wrote:

>

>>

>

>

>

>>

>

>> | think what you are showing here is that any variable passed by value
>

>> does not end up modified at the calling level.
>

>

>

> Right.

>

>

>

>> |t doesn't work for arrays of structures either:

>> |DL> sarr = replicate({ foo: 0 }, 10)

\
\%

IDL> modify, sarr[0]
>> |DL> print, sarr[0]

> {0

> Yes, but you can still modify an element, or even a range of elements, of a structure array at
your current calling level:

Page 17 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6804
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83593#msg_83593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> sarr[0].foo = 4

IDL> print, sarr[0].foo
4

IDL> sarr[3:5].foo = 4

IDL> print, sarr[0:6].foo

4 0 0 4 4 4 0

This is not the case for lists, as already discussed:

IDL> larr = list(length=10) & for n=0, 9 do larr[n] = {foo: 0}
IDL> print, larr[0].foo
0
IDL> larr[0].foo = 4
% Attempt to store into an expression: Structure reference.

% Execution halted at: $MAIN$

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

| fail to see why the latter isn't allowed.
| agree. LISTs and HASHes should return a reference to their elements and not a temporary copy.

In addition, IDL needs a reference type that would be similar to a PTR but would not need to be

de-referenced to get at what it is pointing at. It could use de-referencing (or a function call) to set
the reference but then would allow syntax like a normal variable. This would greatly simplify IDL

programing and could perhaps be used to fix the mess that IDL LISTs and HASHes are.

Subject: Re: Storing !NULL in struct
Posted by Yngvar Larsen on Tue, 19 Mar 2013 08:59:39 GMT

Page 18 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

On Tuesday, 19 March 2013 04:26:50 UTC+1, bobnn...@gmail.com wrote:

> | agree. LISTs and HASHes should return a reference to their elements and not a temporary
copy.

Well put. This single sentence summarizes (my position in) the discussion well.

> |n addition, IDL needs a reference type that would be similar to a PTR but would not need to be
de-referenced to get at what it is pointing at. It could use de-referencing (or a function call) to set
the reference but then would allow syntax like a normal variable. This would greatly simplify IDL
programing and could perhaps be used to fix the mess that IDL LISTs and HASHes are.

| often use C =TEMPORARY (*P) in these situations, but then the contents of the pointer is then
left undefined, and needs to be put back after use with P = PTR_NEW(C, /NO_COPY). Your
suggestion would make this much easier.

Yngvar

Page 19 of 19 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35210&goto=83589#msg_83589
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=83589
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

