Subject: Re: I need to bulid a digital phantom urgently, Thanks for help! Posted by Dick Jackson on Mon, 22 Apr 2013 21:14:38 GMT

View Forum Message <> Reply to Message

huiqiang.liu.37@gmail.com wrote:

- > This model is like as follows: a segment of lung tissue was modeled as an
- > array of randomly positioned hollowed spheres (simulating alveoli). A
- > 1*1*11.6 mm3 volume was created to match the thickest lung region (11.6 mm),
- > with simulated alveoli given a 75% packing fraction and a Gaussian

>

> Thank you so much. Liu

Liu,

In researching this a bit, it looks like 75% packing density is not possible with identical spheres...:

http://en.wikipedia.org/wiki/Random close pack#For spheres

... but with the variety of sizes as you described, it may be possible to approach that. 75% is in fact very, very tight.

In any case, my first idea, to place spheres into a volume randomly (without overlap) until the volume is full enough, is clearly not going to work. I think there's no chance of getting close to this optimal packing by random placement. Perhaps someone out there has done this kind of thing before? Perhaps starting with a random set of spheres, and an optimization algorithm to have them push apart until they no longer overlap? I am reminded of something seen in data visualizations called force-directed graph drawing:

http://en.wikipedia.org/wiki/Force-directed_graph_drawing

These other issues (which I wrote about first) are comparatively minor!:

In order to help you, I think we need more a little more information. I guess you're looking to create a 3-D volume array of values with possibly three types of values:

- background
- sphere shell, and
- hollow sphere interior

If the spheres are hollow, we also need to know how thick the shell is (or the diameter of the interior sphere), whether a constant or perhaps a fraction of a given sphere's diameter.

Also necessary is a scale for the array, that is the physical size represented by each 3-D array element, or voxel. I'll assume the voxels are cubes.

__

Cheers, -Dick

Dick Jackson Software Consulting Victoria, BC, Canada www.d-jackson.com

Subject: Re: I need to bulid a digital phantom urgently, Thanks for help! Posted by huiqiang.liu.37 on Tue, 23 Apr 2013 06:23:56 GMT View Forum Message <> Reply to Message

Dick.

Thank you for the prompt reply.

Yes, i agree with you that the 75% packing fraction is very tight with varying size spheres, just like i konwn that someone achieved this model by using the forecasting software Crystal Ball.

yes, i want to create 3D volume array of values with three types of values: background(simulating lung tissue),sphere shell(alveoli,about size of 8-12um),hollow sphere interior(air-filled). of course, if the model does work, it will have very Strong Commonability for us.

Thanks for your help. Liu

```
huiqiang.liu.37@gmail.com wrote:
This model is like as follows: a segment of lung tissue was modeled as an
array of randomly positioned hollowed spheres (simulating alveoli). A
1*1*11.6 mm3 volume was created to match the thickest lung region (11.6 mm),
with simulated alveoli given a 75% packing fraction and a Gaussian
```

```
>
> Liu,
  In researching this a bit, it looks like 75% packing density is not possible
  with identical spheres...:
>
     http://en.wikipedia.org/wiki/Random close pack#For spheres
>
>
>
>
  ... but with the variety of sizes as you described, it may be possible to
>
  approach that. 75% is in fact very, very tight.
>
>
  In any case, my first idea, to place spheres into a volume randomly (without
  overlap) until the volume is full enough, is clearly not going to work. I think
  there's no chance of getting close to this optimal packing by random placement.
  Perhaps someone out there has done this kind of thing before? Perhaps starting
  with a random set of spheres, and an optimization algorithm to have them push
  apart until they no longer overlap? I am reminded of something seen in data
  visualizations called force-directed graph drawing:
>
     http://en.wikipedia.org/wiki/Force-directed_graph_drawing
>
>
>
  These other issues (which I wrote about first) are comparatively minor!:
>
>
  In order to help you, I think we need more a little more information. I guess
> you're looking to create a 3-D volume array of values with possibly three types
> of values:
> - background
```

```
- sphere shell, and
  - hollow sphere interior
>
  If the spheres are hollow, we also need to know how thick the shell is (or the
  diameter of the interior sphere), whether a constant or perhaps a fraction of a
>
  given sphere's diameter.
>
>
  Also necessary is a scale for the array, that is the physical size represented
>
> by each 3-D array element, or voxel. I'll assume the voxels are cubes.
>
>
>
>
>
>
> Cheers,
> -Dick
>
  Dick Jackson Software Consulting
> Victoria, BC, Canada
> www.d-jackson.com
```