Subject: Re: object argument passing behaviour changed in v8.2.27?
Posted by chris_torrence@NOSPAM on Mon, 21 Oct 2013 23:07:41 GMT

View Forum Message <> Reply to Message

Hi Paul,

Nothing has changed with the way IDL passes objects. However, I'm a little confused by your
code. When you say that the "compute_interpolation_frequency" procedure "allocates the
resulting object”, do you really mean that it just fills in some properties on that object? Because it
looks like you are doing an obj_new on those objects before passing them in.

It looks like something strange is going on with garbage collection, where it is somehow freeing up
your object inside compute_interpolation_frequency. However, | can't imagine why this would be
happening. | just create a test program which approximates what you are doing:

pro test_pass_objelement, obj
obj->getproperty, name = name
obj->SetProperty, NAME="NewName'

end

0 = objarr(5)

for i=0,4 do begin
o[i] = obj_new('IDLitComponent’, NAME=STRTRIM(i,2))
test_pass_objelement, oi]
print, obj_valid(o[i])

endfor

end

When | run this code (at least in IDL 8.3), the objects are all valid after the procedure call. Can you
try running this code to make sure it passes for you? If it does, then maybe you can post the
details of your compute_interpolation_frequency procedure, so we can diagnose what is
happening inside

Subject: Re: object argument passing behaviour changed in v8.2.27?
Posted by Paul Van Delst[1] on Tue, 22 Oct 2013 12:16:30 GMT

View Forum Message <> Reply to Message

Hi Chris,

Your test code works fine for me. But | changed it to more closely
approximate what | am doing (and added more output of the properties).

The important change is that the procedure in question has been changed

to a method.

pro IDLitComponent::test_pass_objelement, obj
obj = obj_new('IDLitComponent’)

Page 1 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=84593#msg_84593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=84593
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86260#msg_86260
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86260
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

self->GetProperty, name=name
obj->SetProperty, NAME=name ; Set the name...
obj->GetProperty, NAME=name ;...getit...
print, "In method. Name =", name ; ...and print
end

pro test_pass

0 = objarr(5)

for i=0,4 do begin
scalarobj = obj_new('IDLitComponent',name='scalar work obj")
o[ifl = obj_new(IDLitComponent’,name='empty rank-1')
scalarobj->test_pass_objelement, ofi]
o[i]->getproperty, name = name ; Get the name...
print, “In caller. Name =", name ; ...and print
print

endfor

end

When | run "test_pass" | get the following output:

IDL> test_pass

% Compiled module: TEST_PASS.
In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

So, while the *passed* object is valid upon return, all of the changes

made to it in the method didn't "take".

This is only a problem when the object is an argument to one of its own
methods, but invoked via a different object (in this case "scalarobj").

When the object is passed as an argument to a "regular” procedure (as in

your test case) everything works as expected.

Page 2 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Any ideas? The actual code in question (my operational equivalent of the
main "test_pass") has existed since 2011 - and it's been used to process
data for several satellite sensors.

cheers,

paulv

On 10/21/2013 07:07 PM, Chris Torrence wrote:
Hi Paul,

Nothing has changed with the way IDL passes objects. However, I'm a
little confused by your code. When you say that the
"compute_interpolation_frequency" procedure "allocates the resulting
object", do you really mean that it just fills in some properties on

that object? Because it looks like you are doing an obj_new on those
objects before passing them in.

It looks like something strange is going on with garbage collection,
where it is somehow freeing up your object inside
compute_interpolation_frequency. However, | can't imagine why this
would be happening. | just create a test program which approximates
what you are doing:

pro test_pass_objelement, obj obj->getproperty, name = name
obj->SetProperty, NAME="NewName' end o = objarr(5) for i=0,4 do
begin 0o[i] = obj_new('IDLitComponent’, NAME=STRTRIM(i,2))
test_pass_objelement, ofi] print, obj_valid(o[i]) endfor end

When | run this code (at least in IDL 8.3), the objects are all valid

after the procedure call. Can you try running this code to make sure

it passes for you? If it does, then maybe you can post the details of
your compute_interpolation_frequency procedure, so we can diagnose
what is happening inside.

Thanks! -Chris ExelisVIS

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYV

Subject: Re: object argument passing behaviour changed in v8.2.2?
Posted by Paul Van Delst[1] on Tue, 22 Oct 2013 13:03:49 GMT

View Forum Message <> Reply to Message

O.k. I think I've figured out a workaround -- but | would still like to
know why the test case | posted doesn't work.

| went through our repository logs and saw that | recently added the

Page 3 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86261#msg_86261
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86261
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

creation of a new object in the method.

So, if | remove the line

obj = obj_new('IDLitComponent’)
from the IDLitComponent::test_pass_objelement method, everything works
as expected:

IDL> test_pass

% Compiled module: TEST_PASS.
In method. Name = scalar work obj
In caller. Name = scalar work obj

In method. Name = scalar work obj
In caller. Name = scalar work obj

In method. Name = scalar work obj
In caller. Name = scalar work obj

In method. Name = scalar work obj
In caller. Name = scalar work obj

In method. Name = scalar work obj
In caller. Name = scalar work obj

So, are we dealing with pass-by-reference/value confusion on my part here?
That is, the creation of new object in the method doesn't do anything

about the reference to the original object that was passed in, and

eventually returned back to the caller?

cheers,

paulv

On 10/22/2013 08:16 AM, Paul van Delst wrote:

> Hi Chris,

>

> Your test code works fine for me. But | changed it to more closely

> approximate what | am doing (and added more output of the properties).
>

> The important change is that the procedure in question has been changed
> to a method.

>

pJ— 0p<-----

> pro IDLitComponent::test_pass_objelement, obj

V

obj = obj_new('IDLitComponent’)

Page 4 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVYVYVYVYV

V

VVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

self->GetProperty, name=name
obj->SetProperty, NAME=name ; Set the name...
obj->GetProperty, NAME=name ;...getit...
print, "In method. Name =", name ; ...and print
end
pro test_pass
0 = objarr(5)
for i=0,4 do begin
scalarobj = obj_new('IDLitComponent',name='scalar work obj")
o[ifl = obj_new(IDLitComponent',name='empty rank-1')
scalarobj->test_pass_objelement, ofi]
o[i]->getproperty, name = name ; Get the name...
print, “In caller. Name =", name ; ...and print
print
endfor
end
_____ %<-----

When | run "test_pass" | get the following output:

IDL> test_pass

% Compiled module: TEST_PASS.
In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

In method. Name = scalar work obj
In caller. Name = empty rank-1

So, while the *passed* object is valid upon return, all of the changes

made to it in the method didn't "take".

This is only a problem when the object is an argument to one of its own
methods, but invoked via a different object (in this case "scalarobj").

When the object is passed as an argument to a "regular” procedure (as in

your test case) everything works as expected.

Page 5 of 13 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Any ideas? The actual code in question (my operational equivalent of the
> main "test_pass") has existed since 2011 - and it's been used to process
> data for several satellite sensors.

>

> cheers,

>

> paulv

>

>

> On 10/21/2013 07:07 PM, Chris Torrence wrote:

>> Hi Paul,

>>

>> Nothing has changed with the way IDL passes objects. However, I'm a
>> |[ittle confused by your code. When you say that the

>> "compute_interpolation_frequency" procedure "allocates the resulting
>> object"”, do you really mean that it just fills in some properties on

>> that object? Because it looks like you are doing an obj_new on those
>> objects before passing them in.

>> |t looks like something strange is going on with garbage collection,
>> where it is somehow freeing up your object inside

>> compute_interpolation_frequency. However, | can't imagine why this
>> would be happening. | just create a test program which approximates
>> what you are doing:

>> pro test_pass_objelement, obj obj->getproperty, name = name

>> obj->SetProperty, NAME='NewName' end o = objarr(5) for i=0,4 do
>> begin o[i] = obj_new('IDLitComponent’, NAME=STRTRIM(i,2))

>> test_pass_objelement, ofi] print, obj_valid(o[i]) endfor end

>> When | run this code (at least in IDL 8.3), the objects are all valid

>> after the procedure call. Can you try running this code to make sure
>> jt passes for you? If it does, then maybe you can post the details of

>> your compute_interpolation_frequency procedure, so we can diagnose
>> what is happening inside.

>> Thanks! -Chris ExelisVIS

Subject: Re: object argument passing behaviour changed in v8.2.2?
Posted by David Fanning on Tue, 22 Oct 2013 13:39:00 GMT

View Forum Message <> Reply to Message

Paul van Delst writes:

> That is, the creation of new object in the method doesn't do anything
> about the reference to the original object that was passed in, and

Page 6 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86264#msg_86264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86264
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> eventually returned back to the caller?
This appears to be the semi-passed-by-reference condition. ;-)
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.”)

Subject: Re: object argument passing behaviour changed in v8.2.27?
Posted by Paul Van Delst[1] on Tue, 22 Oct 2013 14:10:44 GMT

View Forum Message <> Reply to Message

Hal!

It's probably my advancing age, but these special cases with regards to
argument passing are really starting to annoy me... mostly because |
still keep brain-fading about them, but also because these days |
expect my code to do what | want, rather than what | tell it to do - a
definite sign of old-codger-ism[*] :0).

Time to translate the code to Fortran2003 | guess. Urg. (Which we sorta
have to do anyway, | was just hoping not to need to do it for a couple
more years.)

cheers,
paulv

[*] Or, more likely, I think I'm in an "autonomous stage" but I'm really
still in a "cognitive stage" with regards to programming skill.
(http://www.brainpickings.org/index.php/2013/10/17/ok-plateau)

On 10/22/2013 09:39 AM, David Fanning wrote:

> Paul van Delst writes:

>

>> That is, the creation of new object in the method doesn't do anything
>> about the reference to the original object that was passed in, and

>> eventually returned back to the caller?

>

Page 7 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86265#msg_86265
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86265
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

This appears to be the semi-passed-by-reference condition. ;-)

>
>
>
>
>
>
>
>

Subject: Re: object argument passing behaviour changed in v8.2.2?
Posted by David Fanning on Tue, 22 Oct 2013 14:43:29 GMT

View Forum Message <> Reply to Message

Paul van Delst writes:

> |It's probably my advancing age

Well, if you are like me, there is no doubt about this. :-)
This situation sorta makes sense to me, though.

| think subscripted arrays are passed by value, not by reference. But,
in the case of an object, the *fields* of the object are often pointers
and other objects (i.e., heap variables) that act like normal variables
and are passed by reference. So, you really do find yourself in this
sort of quantum state where the cat is both alive and dead at the same
time. :-)

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: object argument passing behaviour changed in v8.2.27?
Posted by David Fanning on Tue, 22 Oct 2013 14:51:23 GMT

View Forum Message <> Reply to Message

Paul van Delst writes:

Page 8 of 13 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86266#msg_86266
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86266
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86268#msg_86268
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86268
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> [*] Or, more likely, | think I'm in an "autonomous stage" but I'm really
> still in a "cognitive stage" with regards to programming skKill.
> (http://www.brainpickings.org/index.php/2013/10/17/ok-plateau)

Humm. Probably explains why my backhand is so damn ineffective. :-(
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: object argument passing behaviour changed in v8.2.2?
Posted by chris_torrence@NOSPAM on Tue, 22 Oct 2013 15:57:16 GMT

View Forum Message <> Reply to Message

On Tuesday, October 22, 2013 8:10:44 AM UTC-6, Paul van Delst wrote:
Hal

It's probably my advancing age, but these special cases with regards to
argument passing are really starting to annoy me... mostly because |
still keep brain-fading about them, but also because these days |
expect my code to do what | want, rather than what | tell it to do - a

definite sign of old-codger-ism[*] :0).

Time to translate the code to Fortran2003 | guess. Urg. (Which we sorta
have to do anyway, | was just hoping not to need to do it for a couple

more years.)

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Page 9 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86272#msg_86272
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86272
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

cheers,

paulv

[*] Or, more likely, I think I'm in an "autonomous stage" but I'm really

still in a "cognitive stage" with regards to programming skill.

(http://www.brainpickings.org/index.php/2013/10/17/ok-plateau)

On 10/22/2013 09:39 AM, David Fanning wrote:

VVVVVVVVVVVVVVVYVYVYVYV

>> Paul van Delst writes:

>

>>

>

>>> That is, the creation of new object in the method doesn't do anything
>

>>> about the reference to the original object that was passed in, and
>

>>> eventually returned back to the caller?

>

>>

>

>> This appears to be the semi-passed-by-reference condition. ;-)
>

>>

>

>> Cheers,

>

>>

>

>> David

>

>>

>

>>

>

>>

Hi Paul,

Page 10 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

| don't think this is a special case. It's also not "semi-passed-by-reference." The code is simply
passing an expression into a routine, so IDL cannot store into it.

Cheers,

Chris

Subject: Re: object argument passing behaviour changed in v8.2.2?
Posted by David Fanning on Tue, 22 Oct 2013 16:47:57 GMT

View Forum Message <> Reply to Message

Chris Torrence writes:

> | don't think this is a special case. It's also not "semi-passed-by-reference." The code is simply
passing an expression into a routine, so IDL cannot store into it.

The point is, it *does* store into it, even though it is being passed by
value!

The object reference is passed by value, but the object itself, as a
heap variable, is more like a variable that is passed by reference. This
gives this situation the semi-passed-by-reference feel.

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: object argument passing behaviour changed in v8.2.2?
Posted by Paul Van Delst[1] on Tue, 22 Oct 2013 16:59:18 GMT

View Forum Message <> Reply to Message

On 10/22/2013 11:57 AM, Chris Torrence wrote:

>
> Hi Paul,

> | don't think this is a special case. It's also not

> "semi-passed-by-reference."” The code is simply passing an expression
> into a routine, so IDL cannot store into it.

> Cheers, Chris

Well, that's not the case. Both your, and my corrected, test cases shows
that you *can* store into the array element reference (well, the object
that was referenced in that array element) in the callee.

Page 11 of 13 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86273#msg_86273
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86273
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86274#msg_86274
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86274
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

It was the "redefinition” of the object in the routine (or method) that
was screwing things up.

| know it won't (can't) change anytime soon, but | find the fact that an
array element reference is considered an expression in IDL very
confusing. It just doesn't grok well.

IDL users should be shielded from under-the-hood details like argument
passing mechanisms, IMO (that's my Fortran90/95/2003 side talking).

cheers,

paulv

Subject: Re: object argument passing behaviour changed in v8.2.27?
Posted by chris_torrence@NOSPAM on Tue, 22 Oct 2013 17:17:00 GMT

View Forum Message <> Reply to Message

On Tuesday, October 22, 2013 10:59:18 AM UTC-6, Paul van Delst wrote:
> 0On 10/22/2013 11:57 AM, Chris Torrence wrote:

>

>>

>

>> Hi Paul,
>

>> | don't think this is a special case. It's also not

>

>> "semi-passed-by-reference.” The code is simply passing an expression
>> into a routine, so IDL cannot store into it.

>> Cheers, Chris

Well, that's not the case. Both your, and my corrected, test cases shows

that you *can* store into the array element reference (well, the object

that was referenced in that array element) in the callee.

It was the "redefinition” of the object in the routine (or method) that

VVVVVVVVVYVYVYVYVYV

was screwing things up.

Page 12 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35600&goto=86275#msg_86275
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86275
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

| know it won't (can't) change anytime soon, but | find the fact that an
array element reference is considered an expression in IDL very

confusing. It just doesn't grok well.

IDL users should be shielded from under-the-hood details like argument

passing mechanisms, IMO (that's my Fortran90/95/2003 side talking).

cheers,

VVVVVVVVVVVVVVVVVYVYVYVYVYV

paulv

Yep, | agree that a different decision would have been better. Unfortunately, we would have to
travel back 30 years in time to tell David Stern... If | recall, Fortran 77 passed by reference (even
for array elements), so David could have gotten it right... Oh well.

-Chris

Page 13 of 13 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

