
Subject: Avoiding Loops in IDL 8.2.2
Posted by Nate Tellis on Sat, 22 Jun 2013 00:04:31 GMT
View Forum Message <> Reply to Message

Hi all,

I have a series of 711x4096x3 arrays. I am searching for good fits to a model, which is an 11x19
array, using a reduced chi-square fit. As it is now, I step across, pixel by pixel, column by column,
pane by pane, and perform the fit to a subimage centred at the loop indices (normalized to the
value of the central pixel). The fit is simple element-wise subtraction and squaring of the sub
images, followed by one call to 'total' on the sub-image:

Chi^2_red = 1/Npixels * Sum over each pixel((image - fit)^2/error^2)

(This is of course fast, as the -, ^2, /, and 'total' operations utilize the IDL thread pool)

I know I can speed this up by using operations that leverage multithreading. How can I go about
avoiding these hated nested for loops? Performing the fits on all ~8,500,000 subimages without
multithreading takes way too long - about 90 seconds on average.

Thank you for the help,
Nate

Subject: Re: Avoiding Loops in IDL 8.2.2
Posted by Nate Tellis on Sun, 23 Jun 2013 22:24:17 GMT
View Forum Message <> Reply to Message

On Friday, 21 June 2013 17:04:31 UTC-7, Nate Tellis wrote:
> Hi all,
>
>
>
> I have a series of 711x4096x3 arrays. I am searching for good fits to a model, which is an
11x19 array, using a reduced chi-square fit. As it is now, I step across, pixel by pixel, column by
column, pane by pane, and perform the fit to a subimage centred at the loop indices (normalized
to the value of the central pixel). The fit is simple element-wise subtraction and squaring of the
sub images, followed by one call to 'total' on the sub-image:
>
>
>
> Chi^2_red = 1/Npixels * Sum over each pixel((image - fit)^2/error^2)
>
>
>
> (This is of course fast, as the -, ^2, /, and 'total' operations utilize the IDL thread pool)
>
>

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7823
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35730&goto=85013#msg_85013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7823
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35730&goto=85017#msg_85017
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85017
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> I know I can speed this up by using operations that leverage multithreading. How can I go about
avoiding these hated nested for loops? Performing the fits on all ~8,500,000 subimages without
multithreading takes way too long - about 90 seconds on average.
>
>
>
> Thank you for the help,
>
> Nate

Here's a simpler question. I think I can solve my problem if I can do this efficiently:

Say I have an array like:

A =

1 2 3 4
5 6 7 8

where A is 4 by 2

How can I use reform and rebin to get an array of dimension 2 by 2 by 2 that looks like

1 2
5 6

3 4
7 8

Any help is much appreciated.

Subject: Re: Avoiding Loops in IDL 8.2.2
Posted by Moritz Fischer on Mon, 24 Jun 2013 05:05:03 GMT
View Forum Message <> Reply to Message

Hi Nate,

transpose(reform(transpose(A),2,2,2),[1,0,2])

cheers

Am 24.06.2013 00:24, schrieb Nate Tellis:
> On Friday, 21 June 2013 17:04:31 UTC-7, Nate Tellis wrote:

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7824
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35730&goto=85021#msg_85021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Hi all,
>>
>>
>>
>> I have a series of 711x4096x3 arrays. I am searching for good fits
>> to a model, which is an 11x19 array, using a reduced chi-square
>> fit. As it is now, I step across, pixel by pixel, column by column,
>> pane by pane, and perform the fit to a subimage centred at the loop
>> indices (normalized to the value of the central pixel). The fit is
>> simple element-wise subtraction and squaring of the sub images,
>> followed by one call to 'total' on the sub-image:
>>
>>
>>
>> Chi^2_red = 1/Npixels * Sum over each pixel((image -
>> fit)^2/error^2)
>>
>>
>>
>> (This is of course fast, as the -, ^2, /, and 'total' operations
>> utilize the IDL thread pool)
>>
>>
>>
>> I know I can speed this up by using operations that leverage
>> multithreading. How can I go about avoiding these hated nested for
>> loops? Performing the fits on all ~8,500,000 subimages without
>> multithreading takes way too long - about 90 seconds on average.
>>
>>
>>
>> Thank you for the help,
>>
>> Nate
>
> Here's a simpler question. I think I can solve my problem if I can do
> this efficiently:
>
> Say I have an array like:
>
> A =
>
> 1 2 3 4 5 6 7 8
>
> where A is 4 by 2
>
> How can I use reform and rebin to get an array of dimension 2 by 2 by
> 2 that looks like

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> 1 2 5 6
>
> 3 4 7 8
>
> Any help is much appreciated.
>

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

