Subject: arithmetic operation on array
Posted by Phillip Miller on Mon, 12 Aug 2013 20:59:16 GMT

View Forum Message <> Reply to Message

Possibly a dumb question, but I'm pretty new to IDL:

| have a geographically explicit time-series with 456 time steps and a
1 degree resolution, so an array of dimensions 360 x 180 x 456, and |
would like to recalculate it as the anomaly from the time-series
average.

| can calculate the time series average no problem

> average = mean(data, dimension=3)

But, of course, when | try

> anomaly = data - mean(data, dimension=3)

then | "lose" my third dimension, and end up with an array of 360 x
180, rather than what | want, which is an array that is the same size
as my original.

| know that | could loop it like

> for i = 0,456 data[*,*,i] = data[*,*,i] - mean(data, dimension=3)

but I feel like there must be a better way than making a for loop. Am
| supposed to duplicate mean(data, dimension=3) times 456 in order to
create an identically sized array for the minus operation? (i.e., an
array with dimensions 360 x 180 x 456, but where each of the 456

"slices" is identical)

Thanks in advance for any suggestions!

Subject: Re: arithmetic operation on array
Posted by David Fanning on Mon, 12 Aug 2013 21:24:07 GMT

View Forum Message <> Reply to Message

Phillip Miller writes:
Possibly a dumb question, but I'm pretty new to IDL:

>
>
> | have a geographically explicit time-series with 456 time steps and a
> 1 degree resolution, so an array of dimensions 360 x 180 x 456, and |
> would like to recalculate it as the anomaly from the time-series
> average.

Page 1 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7856
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85477#msg_85477
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85477
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85478#msg_85478
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85478
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> | can calculate the time series average no problem

>
>> average = mean(data, dimension=3)
>

> But, of course, when | try

>

>> anomaly = data - mean(data, dimension=3)

then | "lose" my third dimension, and end up with an array of 360 x
180, rather than what | want, which is an array that is the same size
as my original.

| know that | could loop it like

V VVVVYVYV

>> for i = 0,456 data[*,*,i] = data[*,*,i] - mean(data, dimension=3)

but | feel like there must be a better way than making a for loop. Am

| supposed to duplicate mean(data, dimension=3) times 456 in order to
create an identically sized array for the minus operation? (i.e., an

array with dimensions 360 x 180 x 456, but where each of the 456
"slices" is identical)

VVVVYVYVYVYV

Thanks in advance for any suggestions!
The answer depends on how big your arrays are, how much on-board memory
your machine has, and whether there is a coffee machine nearby.
Personally, | wouldn't be worrying about optimizing your code until you
discover there is a need to do so.
| wouldn't, however, use code like this:
for i = 0,456 data[*,*,i] = data[*,*,i] - mean(data, dimension=3)
This is guaranteed to be slow, because you are calculating the mean
every time through the loop. Since that doesn't change, calculate it

once:

average = mean(data, dimension=3)
for i = 0,456 data[*,*,i] = data[*,*,i] - average

If you want to give it a try the IDL way, | would try something like
this:

average = mean(data, dimension=3)
data = Temporary(data) - Rebin(average, 360, 180, 456)

You can time it by wrapping the code in the routines TIC and TOC. We

Page 2 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

would all be curious to see the results. :-)
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.”)

Subject: Re: arithmetic operation on array
Posted by Phillip Bitzer on Mon, 12 Aug 2013 22:22:14 GMT

View Forum Message <> Reply to Message

OK, I'll bite. There are three ways | can think to do this off the top of my head:

1) Do a loop, like Phillip said (what a fantastic name :-))

2) Rebin, like David said

3) Use the mysterious "add an extra dimension” method (
https://groups.google.com/d/msg/comp.lang.idl-pvwave/Vu9rzgqc kKBNQ/HvkK_QnJrsgJ and more
recently https://groups.google.com/d/msg/comp.lang.idl-pvwave/dM8XXas Eio0/d3__ pvX7svMJ)

Here are the sample code | used:

data = RANDOMU(1L, 360, 180, 456)

avg = MEAN(data, DIM=3)

mDatal = FLTARR(360, 180, 456)

tic & for i=0, 455 do mDatal[*,*,i] = data[*,*,i] - avg & toc
mData2 = FLTARR(360, 180, 456)

tic & mData2 = data - Rebin(avg, 360, 180, 456) & toc
tic & data = TEMPORARY (data) - Rebin(avg, 360, 180, 456) & toc ;just for completeness

data = RANDOMU(LL, 360, 180, 456) ;redefine data - we changed it above
mbData3 = FLTARR(360, 180, 456)

tic & mData3 = data - avg[*, *, 0] & toc

| used mData (modified data) arrays so | can check | get the same answer, regardless of the
method.

The four times | get are, in order relative to the above:

Page 3 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5770
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85479#msg_85479
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85479
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

% Time elapsed: 0.12749481 seconds.
% Time elapsed: 0.33231401 seconds.
% Time elapsed: 0.33304191 seconds.
% Time elapsed: 0.019619942 seconds.

So, it seems the mysterious extra dimension method is the fastest, by an order of magnitude.
Whoa.

For prosperity,
IDL> print, 'VERSION
{ x86_64 darwin unix Mac OS X 8.2.2 Jan 23 2013 64 64}

Subject: Re: arithmetic operation on array
Posted by Phillip Miller on Mon, 12 Aug 2013 22:51:57 GMT

View Forum Message <> Reply to Message

On 2013-08-12 21:24:07 +0000, David Fanning said:

> Phillip Miller writes:
>

>> Possibly a dumb question, but I'm pretty new to IDL:

>>

>> | have a geographically explicit time-series with 456 time steps and a
>> 1 degree resolution, so an array of dimensions 360 x 180 x 456, and |

>> would like to recalculate it as the anomaly from the time-series
>> average.

>>

>> | can calculate the time series average no problem
>>

>>> average = mean(data, dimension=3)

>>

>> But, of course, when | try

>>

>>> anomaly = data - mean(data, dimension=3)

>>

>> then | "lose" my third dimension, and end up with an array of 360 x
>> 180, rather than what | want, which is an array that is the same size
>> as my original.

>>
>> | know that | could loop it like

>>

>>> for i = 0,456 data[*,*,i] = data[*,*,i] - mean(data, dimension=3)

>>

>> put | feel like there must be a better way than making a for loop. Am

>> | supposed to duplicate mean(data, dimension=3) times 456 in order to
>> create an identically sized array for the minus operation? (i.e., an
>> array with dimensions 360 x 180 x 456, but where each of the 456

Page 4 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7856
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85480#msg_85480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85480
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> "slices" is identical)
>>

>> Thanks in advance for any suggestions!
The answer depends on how big your arrays are, how much on-board memory
your machine has, and whether there is a coffee machine nearby.
Personally, | wouldn't be worrying about optimizing your code until you
discover there is a need to do so.
| wouldn't, however, use code like this:
for i = 0,456 data[*,*,i] = data[*,*,i] - mean(data, dimension=3)
This is guaranteed to be slow, because you are calculating the mean
every time through the loop. Since that doesn't change, calculate it

once:

average = mean(data, dimension=3)
for i = 0,456 data[*,*,i] = data[*,*,i] - average

If you want to give it a try the IDL way, | would try something like
this:

average = mean(data, dimension=3)
data = Temporary(data) - Rebin(average, 360, 180, 456)

You can time it by wrapping the code in the routines TIC and TOC. We
would all be curious to see the results. :-)

Cheers,

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

David

Thanks, that was quite helpful. To satisfy your curiosity, | did some
ticking and tocking, and | used a "fake" data set for the sake of this
example so that | could try it with even more data and get a bigger
difference in the time (double precision array with dimensions 360 x
180 x 1000). All of this is on an iMac with a 2.8 GHz i7 and 16 GB of
RAM.

First of all, | wanted to see just how much slower my original for loop
would be, but | had to make an adjustment because

> for i = 0,456 data[*,*,i] = data[*,*,i] - mean(data, dimension=3)

has a major flaw (aside from having forgotten the "do" and having my
index end one-too-high for a dimension of size 456 starting at zero)
which is that as my "data" array has a slice rewritten at each step
through the for loop, the mean of all the slices gets incorrectly

altered as well. So I had to create a new array to accept the "anomaly”

Page 5 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

values at each step in the for loop.
Anyway, the following code:

data = dindgen(360,180,1000)

; Example 1: Original (slow) loop

tic

anom = data

for i=0, 999 do anom[**,i] = data[*,*,i]-mean(data, dimension=3)
print, 'Example 1: Original (slow) loop'

toc

; Example 2: David's (better) loop

tic

average = mean(data, dimension=3)

for i=0, 999 do data[*,*,i] = data[*,*,i]-average

print, 'Example 2: David"s (better) loop’

toc

; Example 3: the IDL way

tic

average = mean(data, dimension=3)

data = temporary(data) - rebin(average,360,180,1000)
print, 'Example 3: the IDL way'

toc

gives the following result:

Example 1: Original (slow) loop

% Time elapsed: 599.96640 seconds.
Example 2: David's (better) loop

% Time elapsed: 0.83603501 seconds.
Example 3: the IDL way

% Time elapsed: 1.4728391 seconds.

So, not surprisingly, the original loop | had would have required a
coffee machine near by after all. | knew that would be inefficient,

but I had thought it due to the for loop in and of itself, rather than

a poorly-written for loop that executes the exact same mean operation
each iteration.

But quite interestingly, the "IDL way" is, in this particular case,
actually slower than the more efficient for loop. Could that truly be,
or am | doing something wrong here?

As an aside, | see why using temporary(data) in example 3 is more
memory efficient. Would it have been appropriate to use it in example
2 as well, e.g.

for i=0, 999 do data[*,*,i] = temporary(data[*,*,i])-average

or would | be losing the original array as soon as the temporary

Page 6 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

function kicks in during the first iteration of the for loop?

Subject: Re: arithmetic operation on array
Posted by Phillip Miller on Mon, 12 Aug 2013 23:08:38 GMT

View Forum Message <> Reply to Message

On 2013-08-12 22:22:14 +0000, Phillip Bitzer said:

OK, I'll bite. There are three ways | can think to do this off the top

of my head:

1) Do a loop, like Phillip said (what a fantastic name :-))

2) Rebin, like David said

3) Use the mysterious "add an extra dimension" method

(https://groups.google.com/d/msg/comp.lang.idl-pvwave/Vu9rzqc KBNQ/HVKK _QnJrsgJ
and more recently

https://groups.google.com/d/msg/comp.lang.idl-pvwave/dM8XXas Eio0/d3__ pvX7svMJ)

Here are the sample code | used:

data = RANDOMU(1L, 360, 180, 456)
avg = MEAN(data, DIM=3)
mDatal = FLTARR(360, 180, 456)

tic & for i=0, 455 do mDatal[**,i] = data[*,*,i] - avg & toc
mData2 = FLTARR(360, 180, 456)

tic & mData2 = data - Rebin(avg, 360, 180, 456) & toc
tic & data = TEMPORARY (data) - Rebin(avg, 360, 180, 456) & toc ;just
for completeness

data = RANDOMU(1L, 360, 180, 456) ;redefine data - we changed it above
mData3 = FLTARR(360, 180, 456)

tic & mData3 = data - avg[*, *, 0] & toc

| used mData (modified data) arrays so | can check | get the same
answer, regardless of the method.

The four times | get are, in order relative to the above:
% Time elapsed: 0.12749481 seconds.

% Time elapsed: 0.33231401 seconds.

% Time elapsed: 0.33304191 seconds.

% Time elapsed: 0.019619942 seconds.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

So, it seems the mysterious extra dimension method is the fastest, by

Page 7 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7856
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85481#msg_85481
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85481
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

an order of magnitude. Whoa.

>

>

> For prosperity,

> IDL> print, 'VERSION

> {x86_64 darwin unix Mac OS X 8.2.2 Jan 23 2013 64 64}
Excellent, thanks for the tip.

| tried it on my 360x180x1000 double precision array and got the
similar results as you, though not quite an order of magnitude
difference between it and the "improved" loop method, the mysterious
extra dimension method was indeed the fastest

Subject: Re: arithmetic operation on array
Posted by Phillip Miller on Mon, 12 Aug 2013 23:17:58 GMT

View Forum Message <> Reply to Message

On 2013-08-12 23:08:38 +0000, Phillip Miller said:

> On 2013-08-12 22:22:14 +0000, Phillip Bitzer said:

>

>> OK, I'll bite. There are three ways | can think to do this off the top

>> of my head:

>> 1) Do a loop, like Phillip said (what a fantastic name :-))

>> 2) Rebin, like David said

>> 3) Use the mysterious "add an extra dimension” method

>> (https://groups.google.com/d/msg/comp.lang.idl-pvwave/Vu9rzgc KBNQ/HVKK _QnJrsgJ
>> and more recently

>> https://groups.google.com/d/msg/comp.lang.idl-pvwave/dM8XXas Eio0/d3___pvX7svMJ)
>>

>>

>> Here are the sample code | used:

>>

>> data = RANDOMU(1L, 360, 180, 456)

>> avg = MEAN(data, DIM=3)

>> mDatal = FLTARR(360, 180, 456)

>>

>> tic & for i=0, 455 do mDatal[*,*,i] = data[*,*,i] - avg & toc
>>

>> mData2 = FLTARR(360, 180, 456)

>>

>> tic & mData2 = data - Rebin(avg, 360, 180, 456) & toc

>> tic & data = TEMPORARY (data) - Rebin(avg, 360, 180, 456) & toc ;just

>> for completeness

>>

>> data = RANDOMU(LL, 360, 180, 456) ;redefine data - we changed it above
>> mData3 = FLTARR(360, 180, 456)

>>

Page 8 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7856
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85482#msg_85482
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85482
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> tic & mData3 = data - avg[*, *, 0] & toc

>> | used mData (modified data) arrays so | can check | get the same
>> answer, regardless of the method.

>> The four times | get are, in order relative to the above:
>> 9% Time elapsed: 0.12749481 seconds.

>> 0 Time elapsed: 0.33231401 seconds.

>> 0 Time elapsed: 0.33304191 seconds.

>> % Time elapsed: 0.019619942 seconds.

>> S0, it seems the mysterious extra dimension method is the fastest, by
>> an order of magnitude. Whoa.

>> For prosperity,
>> |DL> print, 'VERSION
>> {x86_64 darwin unix Mac OS X 8.2.2 Jan 23 2013 64 64}

>
> Excellent, thanks for the tip.

> | tried it on my 360x180x1000 double precision array and got the

> similar results as you, though not quite an order of magnitude

> difference between it and the "improved" loop method, the mysterious
> extra dimension method was indeed the fastest

Hmm, perhaps | spoke too soon. The result of the extra dimension
method has lost the third dimension.

After | run that code, | get

IDL> help, mdata3

MDATA3 FLOAT = Array[360, 180]

Subject: Re: arithmetic operation on array
Posted by David Fanning on Mon, 12 Aug 2013 23:18:49 GMT

View Forum Message <> Reply to Message

Phillip Bitzer writes:

Here are the sample code | used:

data = RANDOMU(1L, 360, 180, 456)

avg = MEAN(data, DIM=3)

mDatal = FLTARR(360, 180, 456)

tic & for i=0, 455 do mDatal[**,i] = data[*,*,i] - avg & toc

mData2 = FLTARR(360, 180, 456)

VVVVVVYVVYVYVYV

tic & mData2 = data - Rebin(avg, 360, 180, 456) & toc

Page 9 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85483#msg_85483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85483
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

tic & data = TEMPORARY (data) - Rebin(avg, 360, 180, 456) & toc ;just for completeness

data = RANDOMU(LL, 360, 180, 456) ;redefine data - we changed it above
mData3 = FLTARR(360, 180, 456)

tic & mData3 = data - avg[*, *, 0] & toc

VVVVYVYVYVYV

| used mData (modified data) arrays so | can check | get the same answer, regardless of the
method.

The four times | get are, in order relative to the above:
% Time elapsed: 0.12749481 seconds.

% Time elapsed: 0.33231401 seconds.

% Time elapsed: 0.33304191 seconds.

% Time elapsed: 0.019619942 seconds.

V VVVVYVYVYV

So, it seems the mysterious extra dimension method is the fastest, by an order of magnitude.
Whoa.

Well, running your code, | find this:

Elapsed Time: 0.168000
Elapsed Time: 0.376000
Elapsed Time: 0.347000
Elapsed Time: 0.009000

But, that last number is truly unbelievable. A quick Help on mData3
reveals this:

IDL> help, mdata3
MDATA3 FLOAT = Array[360, 180]

Whoops! | think you did one subtraction, not 456. :-)
Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: arithmetic operation on array

Page 10 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Posted by Phillip Bitzer on Mon, 12 Aug 2013 23:37:12 GMT

View Forum Message <> Reply to Message

>

> Whoops! | think you did one subtraction, not 456. :-)
>

Aack! | swear | checked that. The dog must have ate the extra dimension :-P
| mean, really, what's 455 missing operations between friends?

Sorry for this detour down TripleCheckYourWork Lane. Everyone back to the IDL Freeway now....

Subject: Re: arithmetic operation on array
Posted by John Correira on Wed, 14 Aug 2013 19:24:17 GMT

View Forum Message <> Reply to Message

On 08/12/2013 06:51 PM, Phillip Miller wrote:

> As an aside, | see why using temporary(data) in example 3 is more

> memory efficient. Would it have been appropriate to use it in example
> 2 as well, e.g.

> for i=0, 999 do data[*,*,i] = temporary(data[*,*,i])-average

> or would | be losing the original array as soon as the temporary

> function kicks in during the first iteration of the for loop?

>

By subscripting the data array you are making a copy of it, so using
TEMPORARY won't help.

John

Subject: Re: arithmetic operation on array
Posted by wlandsman on Wed, 14 Aug 2013 19:54:26 GMT

View Forum Message <> Reply to Message

While TEMPORARY/() won't help things, you can improve the speed by not using asterisks on the
left side of the assignment statement. instead write

for i=0, 999 do data[0,0,i] = temporary(data[*,*,i])-average
http://www.idlcoyote.com/code_tips/asterisk.html
--Wayne

On Wednesday, August 14, 2013 3:24:17 PM UTC-4, John Correira wrote:
> 0On 08/12/2013 06:51 PM, Phillip Miller wrote:

Page 11 of 12 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5770
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85484#msg_85484
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85484
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7383
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85519#msg_85519
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85519
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35833&goto=85521#msg_85521
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85521
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> As an aside, | see why using temporary(data) in example 3 is more
>> memory efficient. Would it have been appropriate to use it in example
>> 2 as well, e.g.

>> for i=0, 999 do data[*,*,i] = temporary(data[*,*,i])-average

>> or would | be losing the original array as soon as the temporary

>> function kicks in during the first iteration of the for loop?

By subscripting the data array you are making a copy of it, so using

TEMPORARY won't help.

VVVVVYVVYVYVYV

John

Page 12 of 12 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

