
Subject: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 15:44:51 GMT
View Forum Message <> Reply to Message

Hi all,

I am writing some code where I am loading a whole bunch of files one by one, querying them from
valid data, and putting valid data from each file into an array (for later use). I don't know ahead of
time how many files there will be, or how many valid data points there will be in a file.

The way I have written my code so far is like this:

var_1_arr=[!values.f_nan]
var_2_arr=[!values.f_nan]
var_3_arr=[!values.f_nan]

f=file_search([path and identifier to files],count=nfiles)

for i=0l,nfiles-1 do begin

 [load contents of file f[i] into a structure]

 is_valid=where(blah blah,n_valid)

 if n_valid gt 0 then begin
 var_1_arr=[var_1_arr,f.var_1[is_valid]]
 var_2_arr=[var_2_arr,f.var_2[is_valid]]
 var_3_arr=[var_3_arr,f.var_3[is_valid]]

 endif

endfor

So, hopefully you get the idea. I only have a small subset of the test data to work with at the
moment (the rest is a few months off).

It occurs to me that I could code it something like this:

max_points=1.e7

var_1_arr=fltarr(max_points)
var_1_arr(*)=!values.f_nan
var_2_arr=var_1_arr
var_3_arr=var_1_arr

f=file_search([path and identifier to files],count=nfiles)

ctr=0l

Page 1 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85726#msg_85726
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85726
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

for i=0l,nfiles-1 do begin

 [load contents of file f[i] into a structure]

 is_valid=where(blah blah,n_valid)

 if n_valid gt 0 then begin
 var_1_arr[ctr:ctr+n_valid]=f.var_1[is_valid]
 var_2_arr[ctr:ctr+n_valid]=f.var_2[is_valid]
 var_3_arr[ctr:ctr+n_valid]=f.var_3[is_valid]
 ctr=ctr+n_valid
 endif

endfor

This has the drawback that I have to know in advance the maximum number of data points I could
have (but I can set max_points to some arbitrary high number to be safe). Does anyone know
whether any one method is better/less memory-intensive than the other, when it comes to largeish
data volumes (tens of millions of points)? I only have a few percent of the final data so far, so am
interested in the likely merits of each method. Google didn't help but perhaps I was using the
wrong search keywords.

In case relevant, this is IDL 7.1.1. or 8.2.2.

Thanks,

Andy

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 15:57:09 GMT
View Forum Message <> Reply to Message

I always find typos after I click the button to post. :) The second code snippet should probably be
[ctr:ctr_n_valid-1] rather than [ctr:ctr_n_valid]. And also, by 'better/less memory-intensive' I really
mean 'faster/less memory-intensive'.

On Thursday, August 29, 2013 11:44:51 AM UTC-4, AMS wrote:
> Hi all,
>
>
>
> I am writing some code where I am loading a whole bunch of files one by one, querying them
from valid data, and putting valid data from each file into an array (for later use). I don't know
ahead of time how many files there will be, or how many valid data points there will be in a file.
>
>

Page 2 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85727#msg_85727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> The way I have written my code so far is like this:
>
>
>
> var_1_arr=[!values.f_nan]
>
> var_2_arr=[!values.f_nan]
>
> var_3_arr=[!values.f_nan]
>
>
>
> f=file_search([path and identifier to files],count=nfiles)
>
>
>
> for i=0l,nfiles-1 do begin
>
>
>
> [load contents of file f[i] into a structure]
>
>
>
> is_valid=where(blah blah,n_valid)
>
>
>
> if n_valid gt 0 then begin
>
> var_1_arr=[var_1_arr,f.var_1[is_valid]]
>
> var_2_arr=[var_2_arr,f.var_2[is_valid]]
>
> var_3_arr=[var_3_arr,f.var_3[is_valid]]
>
>
>
> endif
>
>
>
> endfor
>
>
>
> So, hopefully you get the idea. I only have a small subset of the test data to work with at the

Page 3 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

moment (the rest is a few months off).
>
>
>
> It occurs to me that I could code it something like this:
>
>
>
> max_points=1.e7
>
>
>
> var_1_arr=fltarr(max_points)
>
> var_1_arr(*)=!values.f_nan
>
> var_2_arr=var_1_arr
>
> var_3_arr=var_1_arr
>
>
>
> f=file_search([path and identifier to files],count=nfiles)
>
>
>
> ctr=0l
>
>
>
> for i=0l,nfiles-1 do begin
>
>
>
> [load contents of file f[i] into a structure]
>
>
>
> is_valid=where(blah blah,n_valid)
>
>
>
> if n_valid gt 0 then begin
>
> var_1_arr[ctr:ctr+n_valid]=f.var_1[is_valid]
>
> var_2_arr[ctr:ctr+n_valid]=f.var_2[is_valid]
>

Page 4 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> var_3_arr[ctr:ctr+n_valid]=f.var_3[is_valid]
>
> ctr=ctr+n_valid
>
> endif
>
>
>
> endfor
>
>
>
> This has the drawback that I have to know in advance the maximum number of data points I
could have (but I can set max_points to some arbitrary high number to be safe). Does anyone
know whether any one method is better/less memory-intensive than the other, when it comes to
largeish data volumes (tens of millions of points)? I only have a few percent of the final data so
far, so am interested in the likely merits of each method. Google didn't help but perhaps I was
using the wrong search keywords.
>
>
>
> In case relevant, this is IDL 7.1.1. or 8.2.2.
>
>
>
> Thanks,
>
>
>
> Andy

Subject: Re: Merits of different ways of 'extending' arrays
Posted by David Fanning on Thu, 29 Aug 2013 16:29:43 GMT
View Forum Message <> Reply to Message

AMS writes:

> This has the drawback that I have to know in advance the maximum number of data points I
could have (but I can set max_points to some arbitrary high number to be safe). Does anyone
know whether any one method is better/less memory-intensive than the other, when it comes to
largeish data volumes (tens of millions of points)? I only have a few percent of the final data so
far, so am interested in the likely merits of each method. Google didn't help but perhaps I was
using
the wrong search keywords.

You are MUCH better off to allocate memory in large chucks and then trim
or add to your arrays (in more large chunks) as necessary. This will

Page 5 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85728#msg_85728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

keep you from fragmenting your memory space, which is the single biggest
problem when working with large arrays.

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 16:59:51 GMT
View Forum Message <> Reply to Message

Thanks; happily, this was a simple recode to make. :)

Andy

On Thursday, August 29, 2013 12:29:43 PM UTC-4, David Fanning wrote:
> AMS writes:
>
>
>
>> This has the drawback that I have to know in advance the maximum number of data points I
could have (but I can set max_points to some arbitrary high number to be safe). Does anyone
know whether any one method is better/less memory-intensive than the other, when it comes to
largeish data volumes (tens of millions of points)? I only have a few percent of the final data so
far, so am interested in the likely merits of each method. Google didn't help but perhaps I was
using
>
> the wrong search keywords.
>
>
>
> You are MUCH better off to allocate memory in large chucks and then trim
>
> or add to your arrays (in more large chunks) as necessary. This will
>
> keep you from fragmenting your memory space, which is the single biggest
>
> problem when working with large arrays.
>

Page 6 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85729#msg_85729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
> Cheers,
>
>
>
> David
>
>
>
>
>
>
>
> --
>
> David Fanning, Ph.D.
>
> Fanning Software Consulting, Inc.
>
> Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
>
> Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: Merits of different ways of 'extending' arrays
Posted by chris_torrence@NOSPAM on Thu, 29 Aug 2013 17:11:25 GMT
View Forum Message <> Reply to Message

Actually, if you use lists, then you can add each individual chunk of data to each list, and then use
ToArray() with the DIMENSION keyword. For example:

l = list(findgen(20))
l.add, findgen(20) + 20
help, l.ToArray(DIM=1)
<Expression> FLOAT = Array[40]

This will be both the fastest way and will use the least memory.

Cheers,
Chris
ExelisVIS

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 17:13:12 GMT
View Forum Message <> Reply to Message

Page 7 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85730#msg_85730
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85730
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85731#msg_85731
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85731
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Thanks; some of our machines are on IDL 7.1.1. though so I don't think we can use lists for code
portability. :)

Andy

On Thursday, August 29, 2013 1:11:25 PM UTC-4, Chris Torrence wrote:
> Actually, if you use lists, then you can add each individual chunk of data to each list, and then
use ToArray() with the DIMENSION keyword. For example:
>
>
>
> l = list(findgen(20))
>
> l.add, findgen(20) + 20
>
> help, l.ToArray(DIM=1)
>
> <Expression> FLOAT = Array[40]
>
>
>
> This will be both the fastest way and will use the least memory.
>
>
>
> Cheers,
>
> Chris
>
> ExelisVIS

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Fabzi on Fri, 30 Aug 2013 09:54:23 GMT
View Forum Message <> Reply to Message

On 08/29/2013 07:13 PM, AMS wrote:
> Thanks; some of our machines are on IDL 7.1.1. though so
 > I don't think we can use lists for code portability.:)
>
> Andy

for versions before 8. you have the List from Michael Galloy also, which
is very fast:

http://docs.idldev.com/idllib/collection/dir-overview.html

Cheers

Page 8 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7147
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85742#msg_85742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Michael Galloy on Fri, 30 Aug 2013 21:08:25 GMT
View Forum Message <> Reply to Message

On 8/30/13 3:54 AM, Fabien wrote:
> On 08/29/2013 07:13 PM, AMS wrote:
>> Thanks; some of our machines are on IDL 7.1.1. though so
>> I don't think we can use lists for code portability.:)
>>
>> Andy
>
> for versions before 8. you have the List from Michael Galloy also, which
> is very fast:
>
> http://docs.idldev.com/idllib/collection/dir-overview.html
>
> Cheers

MGcoArrayList implements the block strategy that David was talking
about. Set the BLOCK_SIZE keyword to the size of chunks you want to
allocate.

Also, my library has moved to GitHub, so you should go there to make
sure you always get the most recent versions:

 https://github.com/mgalloy/mglib

It's in src/collection and you need several other of the files in the
collection directory.

Mike
--
Michael Galloy
www.michaelgalloy.com
Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician
Tech-X Corporation

Subject: Re: Merits of different ways of 'extending' arrays
Posted by suicidaleggroll on Mon, 09 Sep 2013 22:41:10 GMT
View Forum Message <> Reply to Message

Another option is to set up a pointer array nfiles long before the loop, inside the loop load the file
and find the valid points, then put that array into that file's pointer, while incrementing a counter to
keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.

Page 9 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85749#msg_85749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85798#msg_85798
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85798
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Something like:

f = file_search(path, count=nfiles)
ptrs = ptrarr(nfiles)
num = 0l
for i=0l,nfiles-1 do begin
 ;; load contents of file
 is_valid = where(stuff, n_valid)
 if n_valid gt 0 then begin
 num += n_valid
 ptrs[i] = ptr_new(f.var_1[is_valid])
 endif
endfor

data = fltarr(num)
idx = 0l
for i=0l,nfiles-1 do begin
 if ptr_valid(ptrs[i]) then begin
 num = n_elements(*ptrs[i])
 data[idx:idx+num-1] = *ptrs[i]
 ptr_free, ptrs[i]
 endif
endfor

Subject: Re: Merits of different ways of 'extending' arrays
Posted by suicidaleggroll on Tue, 10 Sep 2013 20:08:40 GMT
View Forum Message <> Reply to Message

On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:
> Another option is to set up a pointer array nfiles long before the loop, inside the loop load the
file and find the valid points, then put that array into that file's pointer, while incrementing a counter
to keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.
Something like:
>
>
>
> f = file_search(path, count=nfiles)
>
> ptrs = ptrarr(nfiles)
>
> num = 0l
>
> for i=0l,nfiles-1 do begin
>
> ;; load contents of file

Page 10 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85805#msg_85805
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85805
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> is_valid = where(stuff, n_valid)
>
> if n_valid gt 0 then begin
>
> num += n_valid
>
> ptrs[i] = ptr_new(f.var_1[is_valid])
>
> endif
>
> endfor
>
>
>
> data = fltarr(num)
>
> idx = 0l
>
> for i=0l,nfiles-1 do begin
>
> if ptr_valid(ptrs[i]) then begin
>
> num = n_elements(*ptrs[i])
>
> data[idx:idx+num-1] = *ptrs[i]
>
> ptr_free, ptrs[i]
>
> endif
>
> endfor

Wish I could edit my post...

There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Sun, 15 Sep 2013 01:11:07 GMT
View Forum Message <> Reply to Message

Thanks for the continuing tips!

The first suggestion (allocate a 'big enough' array up-front, rather than continually extend) worked
great for my purposes, so that's what I stuck with, given that it was also very simple. Although I
appreciate the continued suggestions.

Page 11 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85862#msg_85862
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85862
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Andy

On Tuesday, September 10, 2013 4:08:40 PM UTC-4, suicida...@gmail.com wrote:
> On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:
>
>> Another option is to set up a pointer array nfiles long before the loop, inside the loop load the
file and find the valid points, then put that array into that file's pointer, while incrementing a counter
to keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.
Something like:
>
>>
>
>>
>
>>
>
>> f = file_search(path, count=nfiles)
>
>>
>
>> ptrs = ptrarr(nfiles)
>
>>
>
>> num = 0l
>
>>
>
>> for i=0l,nfiles-1 do begin
>
>>
>
>> ;; load contents of file
>
>>
>
>> is_valid = where(stuff, n_valid)
>
>>
>
>> if n_valid gt 0 then begin
>
>>
>
>> num += n_valid
>

Page 12 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>> ptrs[i] = ptr_new(f.var_1[is_valid])
>
>>
>
>> endif
>
>>
>
>> endfor
>
>>
>
>>
>
>>
>
>> data = fltarr(num)
>
>>
>
>> idx = 0l
>
>>
>
>> for i=0l,nfiles-1 do begin
>
>>
>
>> if ptr_valid(ptrs[i]) then begin
>
>>
>
>> num = n_elements(*ptrs[i])
>
>>
>
>> data[idx:idx+num-1] = *ptrs[i]
>
>>
>
>> ptr_free, ptrs[i]
>
>>
>
>> endif
>

Page 13 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>> endfor
>
>
>
> Wish I could edit my post...
>
>
>
> There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by suicidaleggroll on Mon, 16 Sep 2013 14:47:38 GMT
View Forum Message <> Reply to Message

The only problem with that is, what is "big enough"? It's going to change from application to
application. What happens when your assumption of "big enough" breaks down? Do you have
support for re-allocating the arrays when you hit their limits? In order to avoid this you have to
make the array SO big that you can start to run into significant memory allocation delays, even
when loading just a small amount of data.

Allocating and expanding in fixed "blocks" as suggested before is a way to elegantly handle this
problem, however the block size needs to be tuned for every application or you can start to get
some big slowdowns.

Just some things to consider when choosing your approach.

On Saturday, September 14, 2013 7:11:07 PM UTC-6, AMS wrote:
> Thanks for the continuing tips!
>
>
>
> The first suggestion (allocate a 'big enough' array up-front, rather than continually extend)
worked great for my purposes, so that's what I stuck with, given that it was also very simple.
Although I appreciate the continued suggestions.
>
>
>
> Andy
>
>
>
> On Tuesday, September 10, 2013 4:08:40 PM UTC-4, suicida...@gmail.com wrote:
>
>> On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:
>

Page 14 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85877#msg_85877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>> Another option is to set up a pointer array nfiles long before the loop, inside the loop load the
file and find the valid points, then put that array into that file's pointer, while incrementing a counter
to keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.
Something like:
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>> f = file_search(path, count=nfiles)
>
>>
>
>>>
>
>>
>
>>> ptrs = ptrarr(nfiles)
>
>>
>
>>>
>
>>
>
>>> num = 0l
>
>>
>
>>>
>
>>
>
>>> for i=0l,nfiles-1 do begin

Page 15 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>>>
>
>>
>
>>> ;; load contents of file
>
>>
>
>>>
>
>>
>
>>> is_valid = where(stuff, n_valid)
>
>>
>
>>>
>
>>
>
>>> if n_valid gt 0 then begin
>
>>
>
>>>
>
>>
>
>>> num += n_valid
>
>>
>
>>>
>
>>
>
>>> ptrs[i] = ptr_new(f.var_1[is_valid])
>
>>
>
>>>
>
>>
>
>>> endif

Page 16 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>>>
>
>>
>
>>> endfor
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>> data = fltarr(num)
>
>>
>
>>>
>
>>
>
>>> idx = 0l
>
>>
>
>>>
>
>>
>
>>> for i=0l,nfiles-1 do begin
>
>>
>
>>>
>
>>
>
>>> if ptr_valid(ptrs[i]) then begin

Page 17 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>>>
>
>>
>
>>> num = n_elements(*ptrs[i])
>
>>
>
>>>
>
>>
>
>>> data[idx:idx+num-1] = *ptrs[i]
>
>>
>
>>>
>
>>
>
>>> ptr_free, ptrs[i]
>
>>
>
>>>
>
>>
>
>>> endif
>
>>
>
>>>
>
>>
>
>>> endfor
>
>>
>
>>
>
>>
>
>> Wish I could edit my post...

Page 18 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>>
>
>>
>
>> There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Tue, 17 Sep 2013 17:40:35 GMT
View Forum Message <> Reply to Message

Right, but for this particular piece of code, I do know the maximum possible size (it's a standalone
function I will call for one piece of analysis, as opposed to something I am plugging into the guys
of a larger project), so it's good for this application. :)

On Monday, September 16, 2013 10:47:38 AM UTC-4, suicida...@gmail.com wrote:
> The only problem with that is, what is "big enough"? It's going to change from application to
application. What happens when your assumption of "big enough" breaks down? Do you have
support for re-allocating the arrays when you hit their limits? In order to avoid this you have to
make the array SO big that you can start to run into significant memory allocation delays, even
when loading just a small amount of data.
>
>
>
> Allocating and expanding in fixed "blocks" as suggested before is a way to elegantly handle this
problem, however the block size needs to be tuned for every application or you can start to get
some big slowdowns.
>
>
>
> Just some things to consider when choosing your approach.
>
>
>
> On Saturday, September 14, 2013 7:11:07 PM UTC-6, AMS wrote:
>
>> Thanks for the continuing tips!
>
>>
>
>>
>
>>
>
>> The first suggestion (allocate a 'big enough' array up-front, rather than continually extend)

Page 19 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85908#msg_85908
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85908
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

worked great for my purposes, so that's what I stuck with, given that it was also very simple.
Although I appreciate the continued suggestions.
>
>>
>
>>
>
>>
>
>> Andy
>
>>
>
>>
>
>>
>
>> On Tuesday, September 10, 2013 4:08:40 PM UTC-4, suicida...@gmail.com wrote:
>
>>
>
>>> On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:
>
>>
>
>>>
>
>>
>
>>>> Another option is to set up a pointer array nfiles long before the loop, inside the loop load
the file and find the valid points, then put that array into that file's pointer, while incrementing a
counter to keep track of the total number of points. When you're done, you have all of your data
saved in pointers (one per file), and a count of the total number of valid points. Then you allocate
your array, loop back through the elements of the pointer array, and fill the array as necessary.
Something like:
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 20 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> f = file_search(path, count=nfiles)
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> ptrs = ptrarr(nfiles)
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 21 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> num = 0l
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> for i=0l,nfiles-1 do begin
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> ;; load contents of file
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 22 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> is_valid = where(stuff, n_valid)
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> if n_valid gt 0 then begin
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> num += n_valid
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 23 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> ptrs[i] = ptr_new(f.var_1[is_valid])
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> endif
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> endfor
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 24 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> data = fltarr(num)
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> idx = 0l
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 25 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> for i=0l,nfiles-1 do begin
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> if ptr_valid(ptrs[i]) then begin
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> num = n_elements(*ptrs[i])
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 26 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> data[idx:idx+num-1] = *ptrs[i]
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> ptr_free, ptrs[i]
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>
>>
>
>>>> endif
>
>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 27 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> endfor
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>> Wish I could edit my post...
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>>
>
>>
>
>>> There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Yngvar Larsen on Tue, 17 Sep 2013 19:34:35 GMT
View Forum Message <> Reply to Message

On Monday, 16 September 2013 15:47:38 UTC+1, suicida...@gmail.com wrote:

> Allocating and expanding in fixed "blocks" as suggested before is a way to elegantly handle this
problem, however the block size needs to be tuned for every application or you can start to get
some big slowdowns.

In the generic case when "big enough" is not known, the best algorithm is to double the size of the

Page 28 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85912#msg_85912
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85912
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

array every time you hit the current capacity. (Or 3x or 1.5x, does not matter as long as the growth
is exponential in as a function of the number of resizes.)

See

http://en.wikipedia.org/wiki/Dynamic_array

--
Yngvar

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Michael Galloy on Tue, 17 Sep 2013 21:47:17 GMT
View Forum Message <> Reply to Message

On 9/17/13 1:34 PM, Yngvar Larsen wrote:
> On Monday, 16 September 2013 15:47:38 UTC+1, suicida...@gmail.com
> wrote:
>
>> Allocating and expanding in fixed "blocks" as suggested before is a
>> way to elegantly handle this problem, however the block size needs
>> to be tuned for every application or you can start to get some big
>> slowdowns.
>
> In the generic case when "big enough" is not known, the best
> algorithm is to double the size of the array every time you hit the
> current capacity. (Or 3x or 1.5x, does not matter as long as the
> growth is exponential in as a function of the number of resizes.)
>
> See
>
> http://en.wikipedia.org/wiki/Dynamic_array
>
>
>

This is what MGcoArrayList does.

 https://github.com/mgalloy/mglib/blob/master/src/collection/ mgcoarraylist__define.pro

I used to add capacity in increments of a BLOCK_SIZE property set by the
user, but I think the doubling is the way to go.

Mike
--

Page 29 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85913#msg_85913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Michael Galloy
www.michaelgalloy.com
Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician
Tech-X Corporation

Page 30 of 30 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

