Subject: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 15:44:51 GMT

View Forum Message <> Reply to Message

Hi all,
| am writing some code where | am loading a whole bunch of files one by one, querying them from
valid data, and putting valid data from each file into an array (for later use). | don't know ahead of
time how many files there will be, or how many valid data points there will be in a file.
The way | have written my code so far is like this:
var_1 arr=[lvalues.f_nan]
var_2_arr=[lvalues.f_nan]
var_3_arr=[lvalues.f_nan]
f=file_search([path and identifier to files],count=nfiles)
for i=0l,nfiles-1 do begin
[load contents of file f[i] into a structure]
is_valid=where(blah blah,n_valid)
if n_valid gt O then begin
var_1 arr=[var_1_arr,f.var_1[is_valid]]
var_2_arr=[var_2_arr,f.var_2[is_valid]]
var_3_arr=[var_3_arr,f.var_3[is_valid]]
endif

endfor

So, hopefully you get the idea. | only have a small subset of the test data to work with at the
moment (the rest is a few months off).

It occurs to me that | could code it something like this:
max_points=1.e7

var_1_arr=fltarr(max_points)

var_1 arr(*)=!values.f_nan

var_2_arr=var_1_arr

var_3 arr=var_1_arr

f=file_search([path and identifier to files],count=nfiles)

ctr=0l

Page 1 of 30 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85726#msg_85726
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85726
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

for i=0l,nfiles-1 do begin
[load contents of file f[i] into a structure]
is_valid=where(blah blah,n_valid)

if n_valid gt O then begin
var_1_arr[ctr:ctr+n_valid]=f.var_1[is_valid]
var_2_arr[ctr:ctr+n_valid]=f.var_2[is_valid]
var_3_arr[ctr:ctr+n_valid]=f.var_3Jis_valid]
ctr=ctr+n_valid

endif

endfor

This has the drawback that | have to know in advance the maximum number of data points | could
have (but | can set max_points to some arbitrary high number to be safe). Does anyone know
whether any one method is better/less memory-intensive than the other, when it comes to largeish
data volumes (tens of millions of points)? | only have a few percent of the final data so far, so am
interested in the likely merits of each method. Google didn't help but perhaps | was using the
wrong search keywords.

In case relevant, thisis IDL 7.1.1. or 8.2.2.

Thanks,

Andy

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 15:57:09 GMT

View Forum Message <> Reply to Message

| always find typos after I click the button to post. :) The second code snippet should probably be
[ctr:ctr_n_valid-1] rather than [ctr:ctr_n_valid]. And also, by 'better/less memory-intensive' | really
mean 'faster/less memory-intensive'.

On Thursday, August 29, 2013 11:44:51 AM UTC-4, AMS wrote:

> Hiall,

>

>

>

> | am writing some code where | am loading a whole bunch of files one by one, querying them
from valid data, and putting valid data from each file into an array (for later use). | don't know

ahead of time how many files there will be, or how many valid data points there will be in a file.
>

>

Page 2 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85727#msg_85727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85727
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The way | have written my code so far is like this:

var_1 arr=[lvalues.f_nan]

var_2_arr=[lvalues.f_nan]

var_3_arr=[lvalues.f_nan]

f=file_search([path and identifier to files],count=nfiles)

for i=0l,nfiles-1 do begin

[load contents of file f[i] into a structure]

is_valid=where(blah blah,n_valid)

if n_valid gt O then begin

var_1 arr=[var_1_arr,f.var_1[is_valid]]

var_2_arr=[var_2_arr,f.var_2[is_valid]]

var_3_arr=[var_3_arr,f.var_3[is_valid]]

endif

endfor

VVYVYVYVYVVYVYVYV

So, hopefully you get the idea. | only have a small subset of the test data to work with at the

Page 3 of 30 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

moment (the rest is a few months off).

It occurs to me that | could code it something like this:

max_points=1.e7

var_1_arr=fltarr(max_points)

var_1 arr(*)=!values.f_nan

var_2_arr=var_1_arr

var_3_arr=var_1_arr

f=file_search([path and identifier to files],count=nfiles)

ctr=0l

for i=0l,nfiles-1 do begin

[load contents of file f[i] into a structure]

is_valid=where(blah blah,n_valid)

if n_valid gt O then begin

var_1_arr[ctr:ctr+n_valid]=f.var_1[is_valid]

var_2_arr[ctr:ctr+n_valid]=f.var_2[is_valid]

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYVYVYV

Page 4 of 30 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> var_3_arr[ctr:ctr+n_valid]=f.var_3[is_valid]
>

> ctr=ctr+n_valid
>

> endif

>

>

>

> endfor

>

>

>

> This has the drawback that | have to know in advance the maximum number of data points |
could have (but | can set max_points to some arbitrary high number to be safe). Does anyone
know whether any one method is better/less memory-intensive than the other, when it comes to
largeish data volumes (tens of millions of points)? | only have a few percent of the final data so
far, so am interested in the likely merits of each method. Google didn't help but perhaps | was
using the wrong search keywords.

In case relevant, thisis IDL 7.1.1. or 8.2.2.

Thanks,

VVVVVVVYVYVYVYVYV

Andy

Subject: Re: Merits of different ways of 'extending' arrays
Posted by David Fanning on Thu, 29 Aug 2013 16:29:43 GMT

View Forum Message <> Reply to Message

AMS writes:

> This has the drawback that | have to know in advance the maximum number of data points |
could have (but | can set max_points to some arbitrary high number to be safe). Does anyone
know whether any one method is better/less memory-intensive than the other, when it comes to
largeish data volumes (tens of millions of points)? | only have a few percent of the final data so
far, so am interested in the likely merits of each method. Google didn't help but perhaps | was
using

the wrong search keywords.

You are MUCH better off to allocate memory in large chucks and then trim
or add to your arrays (in more large chunks) as necessary. This will

Page 5 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85728#msg_85728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

keep you from fragmenting your memory space, which is the single biggest
problem when working with large arrays.

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.”)

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 16:59:51 GMT

View Forum Message <> Reply to Message

Thanks; happily, this was a simple recode to make. :)
Andy

On Thursday, August 29, 2013 12:29:43 PM UTC-4, David Fanning wrote:

> AMS writes:

>

>

>

>> This has the drawback that | have to know in advance the maximum number of data points |
could have (but | can set max_points to some arbitrary high number to be safe). Does anyone
know whether any one method is better/less memory-intensive than the other, when it comes to
largeish data volumes (tens of millions of points)? | only have a few percent of the final data so
far, so am interested in the likely merits of each method. Google didn't help but perhaps | was

c
2]
5

Q

the wrong search keywords.

You are MUCH better off to allocate memory in large chucks and then trim
or add to your arrays (in more large chunks) as necessary. This will
keep you from fragmenting your memory space, which is the single biggest

problem when working with large arrays.

VVVVVVYVVVYVYVYVYV

Page 6 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85729#msg_85729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Cheers,

David

David Fanning, Ph.D.
Fanning Software Consulting, Inc.

Coyote's Guide to IDL Programming: http://www.idlcoyote.com/

VVVVVVVVVVVVVVVVVYVYVYVYVYVYV

Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: Merits of different ways of 'extending' arrays
Posted by chris_torrence@NOSPAM on Thu, 29 Aug 2013 17:11:25 GMT

View Forum Message <> Reply to Message

Actually, if you use lists, then you can add each individual chunk of data to each list, and then use
ToArray() with the DIMENSION keyword. For example:

| = list(findgen(20))

l.add, findgen(20) + 20

help, |. ToArray(DIM=1)

<Expression> FLOAT = Array[40]

This will be both the fastest way and will use the least memory.
Cheers,

Chris
ExelisVIS

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Thu, 29 Aug 2013 17:13:12 GMT

View Forum Message <> Reply to Message

Page 7 of 30 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85730#msg_85730
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85730
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85731#msg_85731
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85731
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Thanks; some of our machines are on IDL 7.1.1. though so | don't think we can use lists for code
portability. :)

Andy
On Thursday, August 29, 2013 1:11:25 PM UTC-4, Chris Torrence wrote:

> Actually, if you use lists, then you can add each individual chunk of data to each list, and then
use ToArray() with the DIMENSION keyword. For example:

| = list(findgen(20))
l.add, findgen(20) + 20
help, . ToArray(DIM=1)

<Expression> FLOAT = Array[40]

This will be both the fastest way and will use the least memory.

Cheers,

Chris

VVVVVVVVVVVVVVVYVYVYVYVYVYVYV

ExelisVIS

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Fabzi on Fri, 30 Aug 2013 09:54:23 GMT

View Forum Message <> Reply to Message

On 08/29/2013 07:13 PM, AMS wrote:

> Thanks; some of our machines are on IDL 7.1.1. though so
> | don't think we can use lists for code portability.:)

>

> Andy

for versions before 8. you have the List from Michael Galloy also, which
is very fast:

http://docs.idldev.com/idllib/collection/dir-overview.html

Cheers

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7147
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85742#msg_85742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85742
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Michael Galloy on Fri, 30 Aug 2013 21:08:25 GMT

View Forum Message <> Reply to Message

On 8/30/13 3:54 AM, Fabien wrote:

> On 08/29/2013 07:13 PM, AMS wrote:

>> Thanks; some of our machines are on IDL 7.1.1. though so
>> | don't think we can use lists for code portability.:)

>>

>> Andy

for versions before 8. you have the List from Michael Galloy also, which
is very fast:

http://docs.idldev.com/idllib/collection/dir-overview.html

VVVVYVYVYV

Cheers

MGcoArrayList implements the block strategy that David was talking
about. Set the BLOCK_SIZE keyword to the size of chunks you want to
allocate.

Also, my library has moved to GitHub, so you should go there to make
sure you always get the most recent versions:

https://github.com/mgalloy/mglib

It's in src/collection and you need several other of the files in the
collection directory.

Mike

Michael Galloy

www.michaelgalloy.com

Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician

Tech-X Corporation

Subject: Re: Merits of different ways of 'extending' arrays
Posted by suicidaleggroll on Mon, 09 Sep 2013 22:41:10 GMT

View Forum Message <> Reply to Message

Another option is to set up a pointer array nfiles long before the loop, inside the loop load the file
and find the valid points, then put that array into that file's pointer, while incrementing a counter to
keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.

Page 9 of 30 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85749#msg_85749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85749
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85798#msg_85798
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85798
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Something like:

f = file_search(path, count=nfiles)
ptrs = ptrarr(nfiles)
num = Ol
for i=0l,nfiles-1 do begin
;; load contents of file
is_valid = where(stuff, n_valid)
if n_valid gt O then begin
num += n_valid
ptrs[i] = ptr_new(f.var_1[is_valid])
endif
endfor

data = fltarr(num)
idx = Ol
for i=0l,nfiles-1 do begin
if ptr_valid(ptrs[i]) then begin
num = n_elements(*ptrsi])
data[idx:idx+num-1] = *ptrsJi]
ptr_free, ptrs|i]
endif
endfor

Subject: Re: Merits of different ways of 'extending' arrays
Posted by suicidaleggroll on Tue, 10 Sep 2013 20:08:40 GMT

View Forum Message <> Reply to Message

On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:

> Another option is to set up a pointer array nfiles long before the loop, inside the loop load the
file and find the valid points, then put that array into that file's pointer, while incrementing a counter
to keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.

Something like:

>

f = file_search(path, count=nfiles)
ptrs = ptrarr(nfiles)

num = Ol

for i=0l,nfiles-1 do begin

VVVVVVYVVYVYVYV

;- load contents of file

Page 10 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85805#msg_85805
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85805
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

is_valid = where(stuff, n_valid)
if n_valid gt O then begin

num += n_valid

ptrs[i] = ptr_new(f.var_1[is_valid])
endif

endfor

data = fltarr(num)
idx = Ol
for i=0l,nfiles-1 do begin
if ptr_valid(ptrs[i]) then begin
num = n_elements(*ptrsJi])
data[idx:idx+num-1] = *ptrsJi]
ptr_free, ptrs|i]

endif

VVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYVYV

endfor
Wish | could edit my post...

There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Sun, 15 Sep 2013 01:11:07 GMT

View Forum Message <> Reply to Message

Thanks for the continuing tips!

The first suggestion (allocate a 'big enough' array up-front, rather than continually extend) worked
great for my purposes, so that's what | stuck with, given that it was also very simple. Although |
appreciate the continued suggestions.

Page 11 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85862#msg_85862
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85862
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Andy

On Tuesday, September 10, 2013 4:08:40 PM UTC-4, suicida...@gmail.com wrote:

> On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:

>

>> Another option is to set up a pointer array nfiles long before the loop, inside the loop load the
file and find the valid points, then put that array into that file's pointer, while incrementing a counter
to keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.
Something like:

>

>>

>

>>

>

>>

>

>> f =file_search(path, count=nfiles)

>

>>

>

>> ptrs = ptrarr(nfiles)

>

>>

>

>> num = 0Ol

>

>>

>

>> for i=0l,nfiles-1 do begin

>

>>

>

>> ;:load contents of file

>

>>

>

>> js_valid = where(stuff, n_valid)

>

>>

>

>> jf n_valid gt O then begin

>

>>

>

>> num += n_valid

>

Page 12 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> ptrs[i] = ptr_new(f.var_1[is_valid])

>> endif

>> endfor

>> data = fltarr(num)

>> idx =0l

V
V

for i=0l,nfiles-1 do begin

V
V

if ptr_valid(ptrs[i]) then begin

>> num = n_elements(*ptrsi])

>> data[idx:idx+num-1] = *ptrsJi]

>> ptr_free, ptrs]i]

>> endif

Page 13 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>> endfor

>
>
>
> Wish | could edit my post...
>
>
>
>

There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by suicidaleggroll on Mon, 16 Sep 2013 14:47:38 GMT

View Forum Message <> Reply to Message

The only problem with that is, what is "big enough"? It's going to change from application to
application. What happens when your assumption of "big enough" breaks down? Do you have
support for re-allocating the arrays when you hit their limits? In order to avoid this you have to
make the array SO big that you can start to run into significant memory allocation delays, even
when loading just a small amount of data.

Allocating and expanding in fixed "blocks" as suggested before is a way to elegantly handle this
problem, however the block size needs to be tuned for every application or you can start to get
some big slowdowns.

Just some things to consider when choosing your approach.

On Saturday, September 14, 2013 7:11:07 PM UTC-6, AMS wrote:

> Thanks for the continuing tips!

>

>

>

> The first suggestion (allocate a 'big enough' array up-front, rather than continually extend)
worked great for my purposes, so that's what | stuck with, given that it was also very simple.
Although | appreciate the continued suggestions.

>

Andy

On Tuesday, September 10, 2013 4:08:40 PM UTC-4, suicida...@gmail.com wrote:

V VVVVYVYVYV

>> On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:
>

Page 14 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85877#msg_85877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>

>>> Another option is to set up a pointer array nfiles long before the loop, inside the loop load the
file and find the valid points, then put that array into that file's pointer, while incrementing a counter
to keep track of the total number of points. When you're done, you have all of your data saved in
pointers (one per file), and a count of the total number of valid points. Then you allocate your
array, loop back through the elements of the pointer array, and fill the array as necessary.
Something like:

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> f = file_search(path, count=nfiles)

>

>>

>

>>>

>

>>

>

>>> ptrs = ptrarr(nfiles)

>

>>

>

>>>

>

>>

>

>>> num = 0l

>

>>

>

>>>

>

>>

>

>>> for i=0l,nfiles-1 do begin

Page 15 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

. load contents of file

is_valid = where(stuff, n_valid)

if n_valid gt O then begin

num += n_valid

ptrs[i] = ptr_new(f.var_1[is_valid])

endif

Page 16 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>>

>>

>>

\Y

>>

>>>

>>

>>>

endfor

data = fltarr(num)

idx = Ol

for i=0l,nfiles-1 do begin

if ptr_valid(ptrs[i]) then begin

Page

17 of 30 ---- Generated from

conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>>>
>
>>
>

>>> num = n_elements(*ptrsi])

>
>>
>
>>>
>
>>
>

>>> data[idx:idx+num-1] = *ptrs]i]

>

>>

>

>>>

>

>>

>

>>> ptr_free, ptrs]i]
>

>>

>

>>>

>

>>

>

>>> endif
>

>>

>

>>>

>

>>

>

>>> endfor
>

>>

>

>>

>

>>

>

>> Wish | could edit my post...

Page 18 of 30 ---- Cenerated from

conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

>>

>

>>

>

>>

>

>> There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Andy Sayer on Tue, 17 Sep 2013 17:40:35 GMT

View Forum Message <> Reply to Message

Right, but for this particular piece of code, | do know the maximum possible size (it's a standalone
function | will call for one piece of analysis, as opposed to something | am plugging into the guys
of a larger project), so it's good for this application. :)

On Monday, September 16, 2013 10:47:38 AM UTC-4, suicida...@gmail.com wrote:

> The only problem with that is, what is "big enough"? It's going to change from application to
application. What happens when your assumption of "big enough" breaks down? Do you have
support for re-allocating the arrays when you hit their limits? In order to avoid this you have to
make the array SO big that you can start to run into significant memory allocation delays, even
when loading just a small amount of data.

>

>

>

> Allocating and expanding in fixed "blocks" as suggested before is a way to elegantly handle this
problem, however the block size needs to be tuned for every application or you can start to get
some big slowdowns.

>

Just some things to consider when choosing your approach.

On Saturday, September 14, 2013 7:11:07 PM UTC-6, AMS wrote:

VVVVYVYVYVYV

>> Thanks for the continuing tips!
>

>>

>

>>

>

>>

>

>> The first suggestion (allocate a 'big enough' array up-front, rather than continually extend)

Page 19 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6724
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85908#msg_85908
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85908
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

worked great for my purposes, so that's what | stuck with, given that it was also very simple.
Although | appreciate the continued suggestions.

>

>>

>

>>

>

>>

>

>> Andy

>

>>

>

>>

>

>>

>

>> On Tuesday, September 10, 2013 4:08:40 PM UTC-4, suicida...@gmail.com wrote:

>

>>

>

>>> On Monday, September 9, 2013 4:41:10 PM UTC-6, suicida...@gmail.com wrote:

>

>>

>

>>>

>

>>

>

>>>> Another option is to set up a pointer array nfiles long before the loop, inside the loop load
the file and find the valid points, then put that array into that file's pointer, while incrementing a
counter to keep track of the total number of points. When you're done, you have all of your data
saved in pointers (one per file), and a count of the total number of valid points. Then you allocate
your array, loop back through the elements of the pointer array, and fill the array as necessary.

Something like:
>

>>
>
>>>
>
>>
>
>>>>
>
>>
>
>>>
>

Page 20 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>

>>>> f = file_search(path, count=nfiles)

>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> ptrs = ptrarr(nfiles)
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

Page 21 of 30 ---- Generated from

conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> num = 0l
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> for i=0l,nfiles-1 do begin
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> ::|oad contents of file
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

Page 22 of 30 ---- Generated from

conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>> js_valid = where(stuff, n_valid)
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> jf n_valid gt 0 then begin
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> num +=n_valid
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

Page 23 of 30 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>

>>>> ptrs[i] = ptr_new(f.var_1[is_valid])

>

>>

>
>>>
>

>>

>
>>5>>
>

>>

>
>>>
>

>>

>
>>>> endif
>

>>

>
>>>
>

>>

>
>>5>>
>

>>

>
>>>
>

>>

>
>>>> endfor
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

Page 24 of 30 ---- Generated from

conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>>>>
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> data = fltarr(num)
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> jdx = 0l
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

Page 25 of 30 ---- Generated from

conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>

>
>>>> for i=0I,nfiles-1 do begin
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> f ptr_valid(ptrs][i]) then begin
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> num = n_elements(*ptrsi])
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

Page 26 of 30 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>

>>>> data[idx:idx+num-1] = *ptrs]i]

>
>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> ptr_free, ptrs]i]
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

>>

>
>>>> endif
>

>>

>
>>>
>

>>

>
>>>>
>

>>

>
>>>
>

Page 27 of 30 ---- Generated from

conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>

>>>> endfor
>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> Wish | could edit my post...
>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>>

>

>>

>

>>> There should be an "idx += num" next to the ptr_free at the end of the second loop.

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Yngvar Larsen on Tue, 17 Sep 2013 19:34:35 GMT

View Forum Message <> Reply to Message

On Monday, 16 September 2013 15:47:38 UTC+1, suicida...@gmail.com wrote:

> Allocating and expanding in fixed "blocks" as suggested before is a way to elegantly handle this
problem, however the block size needs to be tuned for every application or you can start to get
some big slowdowns.

In the generic case when "big enough” is not known, the best algorithm is to double the size of the

Page 28 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85912#msg_85912
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85912
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

array every time you hit the current capacity. (Or 3x or 1.5%, does not matter as long as the growth
is exponential in as a function of the number of resizes.)

See

http://en.wikipedia.org/wiki/Dynamic_array

Yngvar

Subject: Re: Merits of different ways of 'extending' arrays
Posted by Michael Galloy on Tue, 17 Sep 2013 21:47:17 GMT

View Forum Message <> Reply to Message

On 9/17/13 1:34 PM, Yngvar Larsen wrote:
> On Monday, 16 September 2013 15:47:38 UTC+1, suicida...@gmail.com
> wrote:

>> Allocating and expanding in fixed "blocks" as suggested before is a
>> way to elegantly handle this problem, however the block size needs
>> to be tuned for every application or you can start to get some big
>> slowdowns.

In the generic case when "big enough” is not known, the best
algorithm is to double the size of the array every time you hit the
current capacity. (Or 3x or 1.5x, does not matter as long as the
growth is exponential in as a function of the number of resizes.)
See

http://en.wikipedia.org/wiki/Dynamic_array

VVVVVVVYVVYVYVYV

This is what MGcoArrayList does.

https://github.com/mgalloy/mglib/blob/master/src/collection/ mgcoarraylist__define.pro

| used to add capacity in increments of a BLOCK_SIZE property set by the
user, but | think the doubling is the way to go.

Mike

Page 29 of 30 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35882&goto=85913#msg_85913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Michael Galloy

www.michaelgalloy.com

Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician

Tech-X Corporation

Page 30 of 30 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

