Subject: structures?
Posted by Seb on Thu, 05 Sep 2013 15:26:30 GMT

View Forum Message <> Reply to Message

Hi,

I'm trying to avoid cumbersome loops, and think that using structure
arrays or pointers, along with index handling, should help. Say we want
to build a table of data for each day in a sequence of julian days. The
rows in the table for each day represent a unique time of that day. Now
we want to examine a collection of files containing data for a

particular date/time, and assign each row to the corresponding row in
the table for that day. | envision doing this as follows:

n_days=10
a_arr=replicate({idxvar:0.0, table:fltarr(10, 10)}, n_days)

where idxvar represents a julian day, and the table contains the time
series for that day. We could then loop through each file, examining
each row and determining which day and which table row in a_arr the row
belongs to. Is there a better way to approach this? My concern is that
the tables for each day could be very large if the time step in the

time series is very small (say a second), and also there could be a

large number of days to build time series for. Is this one of those

cases where looping, while horrible, is a more resource-friendly way to
deal with this?

Thanks,

Seb

Subject: Re: structures?
Posted by Phillip Bitzer on Fri, 06 Sep 2013 14:06:18 GMT

View Forum Message <> Reply to Message

Hi Seb-

It's not clear to me what exactly you're trying/wanting to do. I'm not sure why the "time series for
that day" is a 10x10 array. Is it always 10x10? Will each "row" of the table contain the 10 element
time series for that time?

Is each date in a different file? Do you know how many files/dates a prior?

In addition, what's the ultimate goal of the analysis? This matters in how you might store the data
for easier (quicker) access later, particularly because you mention there may be a lot of data.

Page 1 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5618
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35889&goto=85772#msg_85772
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85772
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5770
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35889&goto=85779#msg_85779
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85779
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Are you asking about looping over the files, i.e., read in each file in a loop? Then yes, you'll have
to loop to read each file. But, if you're asking about looping through the data _in_ the file, then
there may be better ways.

Subject: Re: structures?
Posted by peterkamatej on Sun, 08 Sep 2013 13:37:16 GMT

View Forum Message <> Reply to Message

Hi Seb,

it seems to me that you might need some dynamic data structure, because there might be a
different number of rows needed for each day. Also, a structure array is represented internally as
just one "IDL Variable" and it needs to be stored in one solid block of computer memory. This
could be quite resource-unfriendly if it's going to be very large (say, hundreds of MB). Especially, if
you decide to enlarge the array, a new solid block of memory has to be allocated, the contents
copied there and eventually the original memory can be freed.

You could use pointer array instead, but | recommend using the new dynamic data types
introduced in IDL 8, HASH() and LIST(). | guess they work internally through pointers, so each
part of the large data structure can be at different place in the memory, which is certainly more
resource-friendly. However, the way you work with HASH() or LIST() is in many aspect similar to
using normal arrays, which is also quite user-friendly (unlike using pointers).

Try looking to the IDL Help at these two data types and see if it suits to you.

Matej

Subject: Re: structures?
Posted by spluque on Wed, 25 Sep 2013 21:57:48 GMT

View Forum Message <> Reply to Message

> Hi Seb,

>

> it seems to me that you might need some dynamic data structure, because there might be a
different number of rows needed for each day. Also, a structure array is represented internally as
just one "IDL Variable" and it needs to be stored in one solid block of computer memory. This
could be quite resource-unfriendly if it's going to be very large (say, hundreds of MB). Especially, if
you decide to enlarge the array, a new solid block of memory has to be allocated, the contents
copied there and eventually the original memory can be freed.

>

> You could use pointer array instead, but | recommend using the new dynamic data types
introduced in IDL 8, HASH() and LIST(). | guess they work internally through pointers, so each
part of the large data structure can be at different place in the memory, which is certainly more
resource-friendly. However, the way you work with HASH() or LIST() is in many aspect similar to

Page 2 of 7 ---- Cenerated from conp. |l ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7870
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35889&goto=85786#msg_85786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=85786
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7872
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35889&goto=86043#msg_86043
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86043
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

using normal arrays, which is also quite user-friendly (unlike using pointers).
>

> Try looking to the IDL Help at these two data types and see if it suits to you.

Thank you Matej, hashes did turn out to be a great option for this. Their flexibility is impressive. |
am using them to create vectors corresponding to fields in a CSV file. | eventually need to write
the data into a new CSV file. | see that the WRITE_CSV procedure can do this, and can take a
structure as input. The toStruct method for hashes comes in handy. However, the order of the
tags is completely arbitrary. Someone has made available a rather long script (
http://code.google.com/p/sdssidl/source/browse/trunk/pro/str uct/reorder_tags.pro?r=72) to
re-order tags in a structure, but was wondering whether there is a simpler/better way to do this.

Thanks,
Seb

Subject: Re: structures?
Posted by spluque on Thu, 26 Sep 2013 14:42:55 GMT

View Forum Message <> Reply to Message

On Wednesday, September 25, 2013 4:57:48 PM UTC-5, spl...@gmail.com wrote:

>

>> Hij Seb,

>

>>

>

>> jt seems to me that you might need some dynamic data structure, because there might be a
different number of rows needed for each day. Also, a structure array is represented internally as
just one "IDL Variable" and it needs to be stored in one solid block of computer memory. This
could be quite resource-unfriendly if it's going to be very large (say, hundreds of MB). Especially, if
you decide to enlarge the array, a new solid block of memory has to be allocated, the contents
copied there and eventually the original memory can be freed.

>

>>

>

>> You could use pointer array instead, but | recommend using the new dynamic data types
introduced in IDL 8, HASH() and LIST(). | guess they work internally through pointers, so each
part of the large data structure can be at different place in the memory, which is certainly more
resource-friendly. However, the way you work with HASH() or LIST() is in many aspect similar to
using normal arrays, which is also quite user-friendly (unlike using pointers).

>

>>

>

>> Try looking to the IDL Help at these two data types and see if it suits to you.

>

> Thank you Matej, hashes did turn out to be a great option for this. Their flexibility is impressive.
| am using them to create vectors corresponding to fields in a CSV file. | eventually need to write

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7872
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35889&goto=86047#msg_86047
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86047
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

the data into a new CSV file. | see that the WRITE_CSV procedure can do this, and can take a
structure as input. The toStruct method for hashes comes in handy. However, the order of the
tags is completely arbitrary. Someone has made available a rather long script (
http://code.google.com/p/sdssidl/source/browse/trunk/pro/str uct/reorder_tags.pro?r=72) to
re-order tags in a structure, but was wondering whether there is a simpler/better way to do this.
>

Suppose we have three vectors of data of the same length, all of which are in a hash. We want to
create CSV files with these vectors, but each file would contain a subset of each vector. This is
how | am doing this:

keys=['a’, 'b’, 'c’]
n=20L
n_group=5L
ts=hash(keys, list(indgen(n), findgen(n), sindgen(n)))
FOR begi=0L, n- 1, n_group DO BEGIN
endi=(begi + n_group - 1)
ts_group=create_struct(keys[0], ts[keys[0], begi:endi])
FOREACH fld, keys[1:*] DO BEGIN
ts_group=create_struct(ts_group, keys[where(keys EQ fld)], $
ts[fld, begi:endi])
ENDFOREACH
write_csv, 'test.csv', ts_group
ENDFOR

In this example, we the full hash has three vectors, each with 20 elements, and we want to create
4 files with the same three vectors, but each containing 5 elemeents of the original. We want to
keep the original order of the keys. It seems rather contrived to have two loops here. Is there a
better way to accomplish this?

Thanks,
Seb

Subject: Re: structures?
Posted by chris_torrence@NOSPAM on Thu, 26 Sep 2013 23:34:16 GMT

View Forum Message <> Reply to Message

On Thursday, September 26, 2013 8:42:55 AM UTC-6, spl...@gmail.com wrote:
> On Wednesday, September 25, 2013 4:57:48 PM UTC-5, spl...@gmail.com wrote:
>

>

>>

>

>>> Hi Seb,
>

Page 4 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35889&goto=86058#msg_86058
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86058
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>

>>>

>

>>

>

>>> it seems to me that you might need some dynamic data structure, because there might be a
different number of rows needed for each day. Also, a structure array is represented internally as
just one "IDL Variable" and it needs to be stored in one solid block of computer memory. This
could be quite resource-unfriendly if it's going to be very large (say, hundreds of MB). Especially, if
you decide to enlarge the array, a new solid block of memory has to be allocated, the contents
copied there and eventually the original memory can be freed.

>

>>

>

>>>

>

>>

>

>>> You could use pointer array instead, but | recommend using the new dynamic data types
introduced in IDL 8, HASH() and LIST(). | guess they work internally through pointers, so each
part of the large data structure can be at different place in the memory, which is certainly more
resource-friendly. However, the way you work with HASH() or LIST() is in many aspect similar to
using normal arrays, which is also quite user-friendly (unlike using pointers).

>

>>

>

>>>

>

>>

>

>>> Try looking to the IDL Help at these two data types and see if it suits to you.

>

>>

>

>> Thank you Matej, hashes did turn out to be a great option for this. Their flexibility is
impressive. | am using them to create vectors corresponding to fields in a CSV file. | eventually
need to write the data into a new CSV file. | see that the WRITE_CSV procedure can do this, and
can take a structure as input. The toStruct method for hashes comes in handy. However, the
order of the tags is completely arbitrary. Someone has made available a rather long script (
http://code.google.com/p/sdssidl/source/browse/trunk/pro/str uct/reorder_tags.pro?r=72) to
re-order tags in a structure, but was wondering whether there is a simpler/better way to do this.

>

>>

V V V V

Page 5 of 7 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

> Suppose we have three vectors of data of the same length, all of which are in a hash. We want
to create CSV files with these vectors, but each file would contain a subset of each vector. This is
how | am doing this:

>
keys=['a’, 'b", 'c']
n=20L
n_group=sL
ts=hash(keys, list(indgen(n), findgen(n), sindgen(n)))
FOR begi=0L, n- 1, n_group DO BEGIN
endi=(begi + n_group - 1)
ts_group=create_struct(keys[0], ts[keys[0], begi:endi])
FOREACH fld, keys[1:¥] DO BEGIN
ts_group=create_struct(ts_group, keys[where(keys EQ fld)], $
ts[fld, begi:endi])
ENDFOREACH
write_csv, 'test.csv', ts_group

ENDFOR

VVVVVVVVVVVVVVVVVVVVVVVYVYVYVYVYVYV

>

> In this example, we the full hash has three vectors, each with 20 elements, and we want to
create 4 files with the same three vectors, but each containing 5 elemeents of the original. We
want to keep the original order of the keys. It seems rather contrived to have two loops here. Is
there a better way to accomplish this?

>

>

>

> Thanks,

>

> Seb

Hi Seb,

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

If you can wait a couple of months, IDL 8.3 will have a nhew OrderedHash class, which will
preserve the order of the keys. There will also be a new Dictionary class, which forces keys to be
case insensitive, but allows you to use "dot" notation to add/retrieve keys, just like a structure.

Cheers,
Chris
ExelisVIS

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive


http://idlcoyote.com/comp.lang.idl-pvwave/index.php

