
Subject: Yet another user with poly_fit problems
Posted by Gus on Mon, 30 Sep 2013 19:59:16 GMT
View Forum Message <> Reply to Message

Hello everyone,

 I've read a few of the older posts on this topic, but their solution didn't really help me solve the
problem that I am currently having with the poly_fit function. The set of coefficients generated by
the function (a 4th degree polynomial) produces some rather absurd results. Here is a short
version of the problem I am having.

X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]

C = poly_fit(X, Y, /double, yfit=D)

IDL generates the following coefficients (for C)

 15.940691
 0.0015355228
 -3.0965110e-007
 1.1170193e-011
 -6.6767399e-017

Yet, one will clearly see that this fit produces rather undesirable results since, within the same
range of X values (0 to roughly 150,000), this fit will produce Y values that can be as high as 1600
and as low as -3000 (rather than between 15.9 and 20). Excel is generating better coefficients
than IDL!

Here is what I have already tried to do (and did not solve the problem)

1) Double precision of X and Y prior to using the poly_fit function (notice that I am using the
"/double" keyword function already in that function);

2) Subtracting the mean of X from that array, before fitting the data - suggested in previous posts;

3) Subtracting the value of X[0] from that array, before fitting the data;

4) Subtracting the mean of Y from that array, before fitting the data.

 Does anyone know of any other solution to this problem?

Subject: Re: Yet another user with poly_fit problems
Posted by Gus on Mon, 30 Sep 2013 20:03:59 GMT
View Forum Message <> Reply to Message

Correction for 3), I meant subtracting Y[0] from the Y array.

Page 1 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7883
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86074#msg_86074
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86074
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7883
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86075#msg_86075
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86075
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Monday, September 30, 2013 4:59:16 PM UTC-3, Gus wrote:
> Hello everyone,
>
>
>
> I've read a few of the older posts on this topic, but their solution didn't really help me solve
the problem that I am currently having with the poly_fit function. The set of coefficients generated
by the function (a 4th degree polynomial) produces some rather absurd results. Here is a short
version of the problem I am having.
>
>
>
> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
>
> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>
>
>
> C = poly_fit(X, Y, /double, yfit=D)
>
>
>
> IDL generates the following coefficients (for C)
>
>
>
> 15.940691
>
> 0.0015355228
>
> -3.0965110e-007
>
> 1.1170193e-011
>
> -6.6767399e-017
>
>
>
> Yet, one will clearly see that this fit produces rather undesirable results since, within the same
range of X values (0 to roughly 150,000), this fit will produce Y values that can be as high as 1600
and as low as -3000 (rather than between 15.9 and 20). Excel is generating better coefficients
than IDL!
>
>
>
> Here is what I have already tried to do (and did not solve the problem)
>

Page 2 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
> 1) Double precision of X and Y prior to using the poly_fit function (notice that I am using the
"/double" keyword function already in that function);
>
>
>
> 2) Subtracting the mean of X from that array, before fitting the data - suggested in previous
posts;
>
>
>
> 3) Subtracting the value of X[0] from that array, before fitting the data;
>
>
>
> 4) Subtracting the mean of Y from that array, before fitting the data.
>
>
>
> Does anyone know of any other solution to this problem?

Subject: Re: Yet another user with poly_fit problems
Posted by David Fanning on Mon, 30 Sep 2013 20:09:10 GMT
View Forum Message <> Reply to Message

Gus writes:

> I've read a few of the older posts on this topic, but their solution didn't really help me solve
the problem that I am currently having with the poly_fit function. The set of coefficients generated
by the function (a 4th degree polynomial) produces some rather absurd results. Here is a short
version of the problem I am having.
>
> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>
> C = poly_fit(X, Y, /double, yfit=D)
>
> IDL generates the following coefficients (for C)
>
> 15.940691
> 0.0015355228
> -3.0965110e-007
> 1.1170193e-011
> -6.6767399e-017

This code doesn't seem to work for me:

Page 3 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86076#msg_86076
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86076
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
IDL> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
IDL> C = poly_fit(X, Y, /double, yfit=D)
% Compiled module: POLY_FIT.
% Variable is undefined: NDEGREE.

Are you sure you are using the right POLY_FIT?

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: Yet another user with poly_fit problems
Posted by suicidaleggroll on Mon, 30 Sep 2013 20:18:03 GMT
View Forum Message <> Reply to Message

On Monday, September 30, 2013 2:09:10 PM UTC-6, David Fanning wrote:
> Gus writes:
>
>
>
>> I've read a few of the older posts on this topic, but their solution didn't really help me solve
the problem that I am currently having with the poly_fit function. The set of coefficients generated
by the function (a 4th degree polynomial) produces some rather absurd results. Here is a short
version of the problem I am having.
>
>>
>
>> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
>
>> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>
>>
>
>> C = poly_fit(X, Y, /double, yfit=D)
>
>>
>
>> IDL generates the following coefficients (for C)
>

Page 4 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86077#msg_86077
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86077
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>
>> 15.940691
>
>> 0.0015355228
>
>> -3.0965110e-007
>
>> 1.1170193e-011
>
>> -6.6767399e-017
>
>
>
> This code doesn't seem to work for me:
>
>
>
> IDL> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
>
> IDL> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>
> IDL> C = poly_fit(X, Y, /double, yfit=D)
>
> % Compiled module: POLY_FIT.
>
> % Variable is undefined: NDEGREE.
>
>
>
> Are you sure you are using the right POLY_FIT?
>
>
>
> Cheers,
>
>
>
> David
>
>
>
> --
>
> David Fanning, Ph.D.
>
> Fanning Software Consulting, Inc.
>

Page 5 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
>
> Sepore ma de ni thue. ("Perhaps thou speakest truth.")

He just missed the "4" in the call (for a 4th order polynomial).

Gus - actually Excel gives the EXACT same answer as IDL, which, as you said, is completely
ridiculous. The problem is you're fitting a 4th order polynomial to 5 data points. Because of this,
the solution will be mathematically perfect (R^2 = 1), because the solution is not overdetermined
and no least squares fitting can be performed.

You need more points in order to generate a "valid" 4th order poly fit so the "fit" can actually do
some good, rather than just reproduce your 5 values exactly (with god knows what in between).

I've run into this in the past, and in that application it was reasonable to linearly interpolate my 5
points to, say, 1000 points, and then perform the poly fit on that.

For example:
X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]

newX = dindgen(1000)/999 * (max(X)-min(X)) + min(X)
newY = interpol(Y, X, newX)
C = poly_fit(newX, newY, 4, /double, yfit=D)
print, C
 17.356485
 0.00010074819
 -2.0171981e-09
 1.8082251e-14
 -5.6591322e-20

Subject: Re: Yet another user with poly_fit problems
Posted by David Fanning on Mon, 30 Sep 2013 20:23:13 GMT
View Forum Message <> Reply to Message

suicidaleggroll@gmail.com writes:

>
> On Monday, September 30, 2013 2:09:10 PM UTC-6, David Fanning wrote:
>> Gus writes:
>>
>>
>>
>>> I've read a few of the older posts on this topic, but their solution didn't really help me solve
the problem that I am currently having with the poly_fit function. The set of coefficients generated
by the function (a 4th degree polynomial) produces some rather absurd results. Here is a short

Page 6 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86078#msg_86078
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86078
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

version of the problem I am having.
>>
>>>
>>
>>> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
>>
>>> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>>
>>>
>>
>>> C = poly_fit(X, Y, /double, yfit=D)
>>
>>>
>>
>>> IDL generates the following coefficients (for C)
>>
>>>
>>
>>> 15.940691
>>
>>> 0.0015355228
>>
>>> -3.0965110e-007
>>
>>> 1.1170193e-011
>>
>>> -6.6767399e-017
>>
>>
>>
>> This code doesn't seem to work for me:
>>
>>
>>
>> IDL> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
>>
>> IDL> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>>
>> IDL> C = poly_fit(X, Y, /double, yfit=D)
>>
>> % Compiled module: POLY_FIT.
>>
>> % Variable is undefined: NDEGREE.
>>
>>
>>
>> Are you sure you are using the right POLY_FIT?
>>

Page 7 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>
>> Cheers,
>>
>>
>>
>> David
>>
>>
>>
>> --
>>
>> David Fanning, Ph.D.
>>
>> Fanning Software Consulting, Inc.
>>
>> Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
>>
>> Sepore ma de ni thue. ("Perhaps thou speakest truth.")
>
>
> He just missed the "4" in the call (for a 4th order polynomial).
>
> Gus - actually Excel gives the EXACT same answer as IDL, which, as you said, is completely
ridiculous. The problem is you're fitting a 4th order polynomial to 5 data points. Because of this,
the solution will be mathematically perfect (R^2 = 1), because the solution is not overdetermined
and no least squares fitting can be performed.
>
> You need more points in order to generate a "valid" 4th order poly fit so the "fit" can actually do
some good, rather than just reproduce your 5 values exactly (with god knows what in between).
>
> I've run into this in the past, and in that application it was reasonable to linearly interpolate my 5
points to, say, 1000 points, and then perform the poly fit on that.
>
> For example:
> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>
> newX = dindgen(1000)/999 * (max(X)-min(X)) + min(X)
> newY = interpol(Y, X, newX)
> C = poly_fit(newX, newY, 4, /double, yfit=D)
> print, C
> 17.356485
> 0.00010074819
> -2.0171981e-09
> 1.8082251e-14
> -5.6591322e-20

Page 8 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

It is probably worth pointing out that the order of the coefficients in
the variable C are e, d, c, b, and a. That sometimes (nearly every time
with me) gets missed.

Cheers,

David

--
David Fanning, Ph.D.
Fanning Software Consulting, Inc.
Coyote's Guide to IDL Programming: http://www.idlcoyote.com/
Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: Yet another user with poly_fit problems
Posted by Heinz Stege on Mon, 30 Sep 2013 22:46:58 GMT
View Forum Message <> Reply to Message

On Mon, 30 Sep 2013 12:59:16 -0700 (PDT), Gus wrote:

> Hello everyone,
>
> I've read a few of the older posts on this topic, but their solution didn't really help me solve the
problem that I am currently having with the poly_fit function. The set of coefficients generated by
the function (a 4th degree polynomial) produces some rather absurd results. Here is a short
version of the problem I am having.
>
> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>
> C = poly_fit(X, Y, /double, yfit=D)
>
> IDL generates the following coefficients (for C)
>
> 15.940691
> 0.0015355228
> -3.0965110e-007
> 1.1170193e-011
> -6.6767399e-017
>
> Yet, one will clearly see that this fit produces rather undesirable results since, within the same
range of X values (0 to roughly 150,000), this fit will produce Y values that can be as high as 1600
and as low as -3000 (rather than between 15.9 and 20). Excel is generating better coefficients
than IDL!
>
> Here is what I have already tried to do (and did not solve the problem)
>

Page 9 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4560
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86080#msg_86080
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86080
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> 1) Double precision of X and Y prior to using the poly_fit function (notice that I am using the
"/double" keyword function already in that function);
>
> 2) Subtracting the mean of X from that array, before fitting the data - suggested in previous
posts;
>
> 3) Subtracting the value of X[0] from that array, before fitting the data;
>
> 4) Subtracting the mean of Y from that array, before fitting the data.
>
> Does anyone know of any other solution to this problem?

As far as I can see, it is not possible to get better results fitting
the given data with a polynomal. The curve you need to fit the data
has to be very steep near x=0 and very flat for x > 20000. I don't see
how to manage this by a polynomal. Please show us the coefficients
from Excel. I'm really interested to see them.

A solution for you may be a function like
 y = (p0 + p1*x + p2*x^2) / (x - x0)
I get the coefficients
 x0=-1543.59
 [p0,p1,p2]=[24607.0, 18.9245, 8.39527e-006]
with a self-written fit routine for non-linear functions. You can try
curvefit (built-in) or mpcurvefit (from Craig Markwardt).

HTH, Heinz

Subject: Re: Yet another user with poly_fit problems
Posted by Gus on Mon, 30 Sep 2013 23:15:22 GMT
View Forum Message <> Reply to Message

Problem has been solved by suicida's reply (THANK YOU VERY MUCH).

 Firstly, I forgot to add then "4" when I typed up the original post, but needless to say, I was
using that correctly in IDL. I also had the coefficient in the right order (the last one is this case is
coefficient for the "X^4"). Thanks David.
 Anyhow, as I typed the original message here I had begun to wonder whether my error was
indeed caused by the fact I had so few points in my array to execute a 4th order polynomial fit.
Before I had come to a solution on how to test for that, I got the answer here. Increasing my data
size through linear interpolation, seems to do the trick.
 Heinz - Suicida's post solved the problem I have. I had thought about using a different method
for fitting, but given that my problem is just a tiny snip of my code, which is used for a variety of
different data points, changing the fitting methodology would create some comparative problems
in its application. So, I need to stick to a single fitting method. Also, I totally misspoke with the
better results for Excel (forgive my blasphemous accusation). I had, inadvertently, used a different
dataset for the fitting in Excel.

Page 10 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7883
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86081#msg_86081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86081
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Thank you everyone for the quick contribution!

On Monday, September 30, 2013 4:59:16 PM UTC-3, Gus wrote:
> Hello everyone,
>
>
>
> I've read a few of the older posts on this topic, but their solution didn't really help me solve
the problem that I am currently having with the poly_fit function. The set of coefficients generated
by the function (a 4th degree polynomial) produces some rather absurd results. Here is a short
version of the problem I am having.
>
>
>
> X = [0.000000, 11.6667, 822.914, 3458.85, 27703.4, 133928.]
>
> Y = [15.9000, 16.0000, 17.0000, 18.0000, 19.0000, 20.0000]
>
>
>
> C = poly_fit(X, Y, /double, yfit=D)
>
>
>
> IDL generates the following coefficients (for C)
>
>
>
> 15.940691
>
> 0.0015355228
>
> -3.0965110e-007
>
> 1.1170193e-011
>
> -6.6767399e-017
>
>
>
> Yet, one will clearly see that this fit produces rather undesirable results since, within the same
range of X values (0 to roughly 150,000), this fit will produce Y values that can be as high as 1600
and as low as -3000 (rather than between 15.9 and 20). Excel is generating better coefficients
than IDL!
>
>
>

Page 11 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Here is what I have already tried to do (and did not solve the problem)
>
>
>
> 1) Double precision of X and Y prior to using the poly_fit function (notice that I am using the
"/double" keyword function already in that function);
>
>
>
> 2) Subtracting the mean of X from that array, before fitting the data - suggested in previous
posts;
>
>
>
> 3) Subtracting the value of X[0] from that array, before fitting the data;
>
>
>
> 4) Subtracting the mean of Y from that array, before fitting the data.
>
>
>
> Does anyone know of any other solution to this problem?

Subject: Re: Yet another user with poly_fit problems
Posted by Ken G on Wed, 02 Oct 2013 17:35:35 GMT
View Forum Message <> Reply to Message

I feel compelled to jump in here and say that the interpolation method is mathematically dicey and
I wouldn't do it. What you're essentially doing is weighting your data points in a very non-linear
way. We see that the first few points are clustered closely together in x; the last few points are
widely separated. The uniform x spacing in the linear interpolation therefore devotes *many* more
points to the large-x-value region relative to the number of y points out there to support the data.
So in your fit result, you're biasing or weighting the data as if the large y were the most significant
point by far. You can see this in the results if you plot newX, D . There's a downward bulge in D
between the last two points as the weighting pulls the curve down toward the linear interpolation.
Plus, D fails to come close to the first 2 points.

Subject: Re: Yet another user with poly_fit problems
Posted by suicidaleggroll on Wed, 02 Oct 2013 19:31:58 GMT
View Forum Message <> Reply to Message

On Wednesday, October 2, 2013 11:35:35 AM UTC-6, Ken G wrote:
> I feel compelled to jump in here and say that the interpolation method is mathematically dicey
and I wouldn't do it. What you're essentially doing is weighting your data points in a very

Page 12 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5861
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86090#msg_86090
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86090
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7868
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86091#msg_86091
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86091
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

non-linear way. We see that the first few points are clustered closely together in x; the last few
points are widely separated. The uniform x spacing in the linear interpolation therefore devotes
many more points to the large-x-value region relative to the number of y points out there to
support the data. So in your fit result, you're biasing or weighting the data as if the large y were
the most significant point by far. You can see this in the results if you plot newX, D . There's a
downward bulge in D between the last two points as the weighting pulls the curve down toward
the linear interpolation. Plus, D fails to come close to the first 2 points.

That is true. I mentioned in my post that this approach was suitable for the application in which I
used it (my points were more or less evenly spaced), but you're right that it might not be ideal for
Gus. The same kind of approach could probably still be used though with different abscissa
values to prevent the heavy weighting at higher X values.

Subject: Re: Yet another user with poly_fit problems
Posted by Heinz Stege on Wed, 02 Oct 2013 19:57:38 GMT
View Forum Message <> Reply to Message

On Wed, 2 Oct 2013 12:31:58 -0700 (PDT), suicidaleggroll@gmail.com
wrote:

> On Wednesday, October 2, 2013 11:35:35 AM UTC-6, Ken G wrote:
>> I feel compelled to jump in here and say that the interpolation method is mathematically dicey
and I wouldn't do it. What you're essentially doing is weighting your data points in a very
non-linear way. We see that the first few points are clustered closely together in x; the last few
points are widely separated. The uniform x spacing in the linear interpolation therefore devotes
many more points to the large-x-value region relative to the number of y points out there to
support the data. So in your fit result, you're biasing or weighting the data as if the large y were
the most significant point by far. You can see this in the results if you plot newX, D . There's a
downward bulge in D between the last two points as the weighting pulls the curve down toward
the linear interpolation. Plus, D fails to come close to the first 2 points.
>
> That is true. I mentioned in my post that this approach was suitable for the application in which I
used it (my points were more or less evenly spaced), but you're right that it might not be ideal for
Gus. The same kind of approach could probably still be used though with different abscissa
values to prevent the heavy weighting at higher X values.

I also fully agree with Ken. And I tried to get the newX values
without different weighting for the X values (except for the first and
the last point). I ran:

newX=X
for i=0,4 do begin &$
 newX=[newX,(newX+newX[1:*])/2.] &$
 newX=newX[sort(newX)] &end
newY = interpol(Y, X, newX)

The result is still as Ken describes: Very bad matching for the first

Page 13 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4560
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86092#msg_86092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

four points and a downward bulge between the last two points.

For me it is a fact, that the given data points can not be fairly
fitted by a polynomial.

Heinz

Subject: Re: Yet another user with poly_fit problems
Posted by Gus on Wed, 02 Oct 2013 22:14:56 GMT
View Forum Message <> Reply to Message

Alright, I can see now that I do not have a perfect solution. For the purposes of my application, the
bulging seen at the end actually concerns me less than the fact that the plotted curve is crossing
the ordinate at roughly 17.3. In my application, very small variations in the value of Y (say +/- 0.2)
Nevertheless, I was far happier to see reasonable Y values being generated by the new
polynomial fit, as opposed to the ridiculous ones I had before.

To contextualize the discussion, I just wanted to say that the actual mathemathical equation used
in the fitting is not so important for the engineering application for which I use it for. What is
important is that, whichever method I use, it should be consistently applied for future datasets.
Moreover, I expect to always have evenly spaced Y values, but increasingly spaced X values.
Perhaps I need to look into the different fitting methods and determine whether one of them is
acceptable for all future datasets.

At any rate, this was a very useful discussion because it made people in my office think about a
whole new set of situations where we can run into rather problematic results when we have few
points to execute a fitting (something that we expect to happen).

Gus

Subject: Re: Yet another user with poly_fit problems
Posted by Yngvar Larsen on Thu, 03 Oct 2013 11:00:17 GMT
View Forum Message <> Reply to Message

On Thursday, 3 October 2013 00:14:56 UTC+2, Gus wrote:

> To contextualize the discussion, I just wanted to say that the actual mathemathical equation
used in the fitting is not so important for the engineering application for which I use it for. What is
important is that, whichever method I use, it should be consistently applied for future datasets.
>
> Moreover, I expect to always have evenly spaced Y values, but increasingly spaced X values.
Perhaps I need to look into the different fitting methods and determine whether one of them is
acceptable for all future datasets.

How about fitting Y versus log(X+X0) then?

Page 14 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7883
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86094#msg_86094
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86094
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86096#msg_86096
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86096
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

X = [0.000000d, 11.6667d, 822.914d, 3458.85d, 27703.4d, 133928d]
Y = [15.9000d, 16.0000d, 17.0000d, 18.0000d, 19.0000d, 20.0000d]
X0 = - min(X) + 1d0 ; "Randomly" chosen to make min(X+X0)>0 for the ALOG operation.

C = poly_fit(alog(X+X0), Y, 3, /double, yfit=D)

plot, X+X0, Y, /xlog
oplot, X+X0, D, col='ff'x

I don't know what X and Y values you expect, but this seems to work reasonably well for the ones
you specify in your original post.

--
Yngvar

Subject: Re: Yet another user with poly_fit problems
Posted by on Thu, 03 Oct 2013 11:06:39 GMT
View Forum Message <> Reply to Message

Den torsdagen den 3:e oktober 2013 kl. 00:14:56 UTC+2 skrev Gus:
>
> Moreover, I expect to always have evenly spaced Y values, but increasingly spaced X values.
Perhaps I need to look into the different fitting methods and determine whether one of them is
acceptable for all future datasets.

This suggests to me that you should fit x as a function of y. (Although your example data set is not
evenly spaced in y - perhaps the first y value should be 15.0 and not 15.9?)

Anyway, this works pretty nicely also with the data you specified, at least between the outermost y
values:

c=poly_fit(y,x,4,/double)
cgplot,y,x,psym=9
yy=findgen(110)/20.+15
cgplot,yy,c[0]+yy*c[1]+yy^2*c[2]+yy^3*c[3]+yy^4*c[4],/over

or

cgplot,x,y,psym=9,/yno
cgplot,c[0]+yy*c[1]+yy^2*c[2]+yy^3*c[3]+yy^4*c[4],yy,/over

Subject: Re: Yet another user with poly_fit problems
Posted by Gus on Wed, 16 Oct 2013 17:12:16 GMT
View Forum Message <> Reply to Message

Page 15 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7475
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86097#msg_86097
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86097
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7883
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35944&goto=86177#msg_86177
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86177
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Forgive my absence, I was away on vacation. I am going to give these 2 a shot and see what
results I get.

Mats - yes, I can make the first value 15.0 and not alter my results. The measurements we obtain
for that variable are always spaced every 1 m (so 15, 16, 17, 18, ... for Y values would be normal).
And, I actually generate equations in both forms, y = f(x) and x = f(y).

--
Gus

Page 16 of 16 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

