Subject: How to speed up kernel density smoothing for many data points
Posted by jacobsvensmark on Thu, 10 Oct 2013 12:22:46 GMT

View Forum Message <> Reply to Message

Okay so | have a long array of N 2D points: x = fltarr(N,2) (as exemplified below). For each point
X(i,*) I need to input the distance to all other points into my K function: K(xi-x), sum together K for
each point, square root and put into my final function f1(i).

| guess | need help both making the input xi-x faster, as well as making K run faster. | tried with
'REPLICATE_INPLACE' which helped some, but | am out of ideas....

PRO test_kernel

N = 1000000
r = 2*randomn(seed,N)
v = 2*randomu(seed,N)

x = [[r.[v]]

; Just a smoothing parameter, unimportant...
hopt = 6.24/(N~(1./6.))*sqgrt((stddev(x(*,0))"2+stddev(x(*,1))"2)/2.)

; Slow loop, where | need help
f1 = fltarr(N)
xi = fltarr(N,2)
for i=0L,N-1 do begin
REPLICATE_INPLACE, xi, x(i,0), 1, [1,0]
REPLICATE_INPLACE, xi, x(i,1), 1, [0,1]
f1(i) = 1./float(N) * total(1./(hopt"2)*K(xi-x,hopt))
endfor

END

FUNCTION K,tvec,h

t =vec_norm(tvec)/h

aa =where(t ge 1.,n0)

bb =where(t It 1.,nt)

RES = fltarr(n_elements(t))

if N0 ne 0 then RES(aa) = 0.

if nt ne 0 then RES(bb) = 4./'Pi*(1.-t(bb)*2)"3
RETURN,res

END

Thanks, Jacob

Subject: Re: How to speed up kernel density smoothing for many data points
Posted by Moritz Fischer on Thu, 10 Oct 2013 12:55:21 GMT

Page 1 of 6 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35957&goto=86130#msg_86130
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86130
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7824
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

View Forum Message <> Reply to Message

Hi Jacob!

Just a quick shot:

I've got a routine that returns pairwise distances (below).
| think you want

mat = matrix_euclidean_distance(x,x)
f1 = 1./float(N) * total(1. (hopt*2)*K(mat,hopt),2)

Just remove the first line of your K function (mat already contains
distances!) and make sure it respects the dimensions of mat (where
returns one dimensional indices, but output should be N by N).

note that mat is - in this case - symmetric, so the dimension argument
of total(, dim) could as well be 1.

hope this helps
cheers

Am 10.10.2013 14:22, schrieb jacobsvensmark@gmail.com:

VVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYV

Okay so | have a long array of N 2D points: x = fltarr(N,2) (as
exemplified below). For each point x(i,*) | need to input the
distance to all other points into my K function: K(xi-x), sum
together K for each point, square root and put into my final function
f1(i).

| guess | need help both making the input xi-x faster, as well as
making K run faster. | tried with 'REPLICATE_INPLACE' which helped
some, but | am out of ideas....

PRO test_kernel

N = 1000000 r = 2*randomn(seed,N) v = 2*randomu(seed,N) x =
[[r][vI1

; Just a smoothing parameter, unimportant... hopt =
6.24/(N~(1./6.))*sqrt((stddev(x(*,0))*2+stddev(x(*,1))"2)/2.)

; Slow loop, where | need help f1 = fltarr(N) xi = fltarr(N,2) for
i=0L,N-1 do begin REPLICATE_INPLACE, xi, x(i,0), 1, [1,0]
REPLICATE_INPLACE, xi, x(i,1), 1, [0,1] f1(i) = 1./float(N) *
total(1./(hopt"2)*K(xi-x,hopt)) endfor

END

FUNCTION K,tvec,ht =vec_norm(tvec)/h aa = where(t ge 1.,n0) bb
=where(t It 1.,nt) RES = fltarr(n_elements(t)) if nO ne 0 then

RES(aa) = 0. if nt ne 0 then RES(bb) = 4./!Pi*(1.-t(bb)"*2)"3
RETURN,res END

Page 2 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35957&goto=86131#msg_86131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86131
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

> Thanks, Jacob
>

“+
: NAME:
; MATRIX_EUCLIDEAN_DISTANCE

: AUTHOR:
: Fischer

; PURPOSE:
; Returns a two dimensional array of distances.

; CALLING SEQUENCE:

;result = matrix_euclidean_distance(p1, p2)

; DESCRIPTION:

; MATRIX_EUCLIDEAN_DISTANCE implements Euclidean metric for k
dimensional space.

; The input format fits the output of my position handling routines, i.e.

; pl=dblarr(n, k) and p2 =dblarr(m, k),

; where n and m are the number of k dimensional points in p1 and p2,
respectively.

; INPUTS:

; pl, p2 arrays of IR"k points, nr_of_points x dimendsion

; e.g. p1 = dblarr(n,3), p2 = dblarr(m,3)

; KEYWORDS:

; SQUARED if set, the square root is omitted (to avoid redundant
operations.)

; RETURNS:

; arr(n, m) Matrix of pairwise distances, where result[i,j] = ||
p1[i,*] - p2[, T I

FUNCTION MATRIX_EUCLIDEAN_DISTANCE, p1, p2, SQUARED = SQUARED

sl = size(pl) & s2 = size(p2)
IF s1[0] EQ 1 THEN p1 = REFORM(p1, 1, s1[1], /OVERWRITE)

Page 3 of 6 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IF s2[0] EQ 1 THEN p2 = REFORM(p2, 1, s2[1], /OVERWRITE)
sl = size(pl) & s2 = size(p2)

dm = make_array(s1[1], s2[1], TYPE=s1][3])

; this loops over dimensions k, not elements!

FOR dim = 0, s1[2]-1 DO dm += $

(rebin(reform(p1[*,dim]), s1[1], s2[1],/S) - $
transpose(rebin(reform(p2[*,dim]), s2[1], s1[1], /S)))"2

RETURN, keyword_set(SQUARED) ? reform(dm) : reform(sqrt(dm))
END

Subject: Re: How to speed up kernel density smoothing for many data points
Posted by Moritz Fischer on Thu, 10 Oct 2013 13:03:15 GMT

View Forum Message <> Reply to Message

...and taking a look at K:

check out the COMPLEMENT keyword to WHERE!

Note that RES[aa] = 0. is redundant (it gets initialized with zeros)!
--m

Am 10.10.2013 14:22, schrieb jacobsvensmark@gmail.com:
> Okay so | have a long array of N 2D points:

Subject: Re: How to speed up kernel density smoothing for many data points
Posted by jacobsvensmark on Thu, 10 Oct 2013 13:29:29 GMT

View Forum Message <> Reply to Message

On Thursday, October 10, 2013 3:03:15 PM UTC+2, Moritz Fischer wrote:
...and taking a look at K:

check out the COMPLEMENT keyword to WHERE!
Note that RES[aa] = 0. is redundant (it gets initialized with zeros)!

--m

Am 10.10.2013 14:22, schrieb :

VVVVVVVVVYVYVYVYVYV

Page 4 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7824
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35957&goto=86132#msg_86132
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86132
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7892
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35957&goto=86133#msg_86133
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86133
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> QOkay so | have a long array of N 2D points:
Hey,

Thanks, | removed the RES[aa] = 0, good point. That will give some speed. And thanks for your
help with the matrix_euclidean_distance program - | tested it out, and for N=1000 it runs instantly,
but for N=10000, its very slow and becomes unresponsive, and for N=100000 it just spits out "%
Array has too many elements". Makes sense because | guess your program effectively makes a
NxN matrix from the N points...

Subject: Re: How to speed up kernel density smoothing for many data points
Posted by Moritz Fischer on Thu, 10 Oct 2013 13:48:41 GMT

View Forum Message <> Reply to Message

as allways: time vs memory. try below.
| guess one could also specialize matrix_eucl... for this very case,
where n=1 and k=2, especially removing the make_array part and the loop.

PRO test_kernel

N = 1000000
r = 2*randomn(seed,N)
v = 2*randomu(seed,N)

x = [[r.[v]]

; Just a smoothing parameter, unimportant...
hopt = 6.24/(N~(1./6.))*sqgrt((stddev(x(*,0))"2+stddev(x(*,1))"2)/2.)

: Slow loop, where | need help
f1 = fltarr(N)
for i=0L,N-1 do begin
mat = matrix_euclidean_distance(x[i,*], X) ; line by line...
f1(i) = 1./float(N) * total(1./(hopt"2)*K(mat,hopt))
endfor

END

FUNCTION K, t ,h
aa = where(t ge 1., n0, COMPLEMENT = bb, nCOMPLEMENT=nt)
if N0 ne O then t(aa) = 0.
if nt ne 0 then t(bb) = 4./'1Pi*(1.-t(bb)"2)"3
RETURN,t
END

Am 10.10.2013 15:29, schrieb jacobsvensmark@gmail.com:
> On Thursday, October 10, 2013 3:03:15 PM UTC+2, Moritz Fischer

Page 5 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7824
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=35957&goto=86136#msg_86136
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86136
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> wrote:

>> _.and taking a look at K:

>>

>> check out the COMPLEMENT keyword to WHERE!
>>

>> Note that RES[aa] = 0. is redundant (it gets initialized with
>> zeros)!

>>

>> --m

>>

>>

>>

>>

>>

>> Am 10.10.2013 14:22, schrieb :

>>

>>> Okay so | have a long array of N 2D points:

\Y

Hey,

Thanks, | removed the RES[aa] = 0, good point. That will give some
speed. And thanks for your help with the matrix_euclidean_distance
program - | tested it out, and for N=1000 it runs instantly, but for
N=10000, its very slow and becomes unresponsive, and for N=100000 it
just spits out "% Array has too many elements". Makes sense because |
guess your program effectively makes a NxN matrix from the N

points...

VVVVVVVYVYVYVYV

Page 6 of 6 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

