
Subject: Adding x,y events to a 2d array (quickly)
Posted by oliver[1] on Thu, 07 Nov 2013 12:45:37 GMT
View Forum Message <> Reply to Message

Hi

This may be a much answered question, but searching for an answer has failed me.

I have 3 (very large) arrays giving x values, y values and energy values.

I wish to create two 2d arrays - one of total (summed) energy for a particular x,y value, and one of
total counts per x,y value.

An example of what I tried is below:

x=[1,1,2]
y=[1,1,2]
e=[10,10,10]

To create the 'counts' value, i used the following:

counts=fltarr(5,5)

counts(x,y)++

This works. You end up with a value of 2 at position(1,1) and a value of 1 at position (2,2).

I hoped to get the 'total energy' value by doing the following:

totalenergy=fltarr(5,5)

totalenergy(x,y)+=e

However, this does not work. The final array only contains the last energy value added at each
point.

Is there an IDL trick I'm missing that allows you to incrementally add values to an array quickly?

Thanks

Oliver

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by Russell Ryan on Thu, 07 Nov 2013 14:10:10 GMT
View Forum Message <> Reply to Message

I read your post several times, and I guess I'm not sure what you're after. That said, I've got a

Page 1 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7907
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86425#msg_86425
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86425
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7546
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86426#msg_86426
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86426
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

good hunch that you're going to need histogram and the reverse_indices output. If so, then you're
actually gonna want hist_nd by JD Smith.

-Russell

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by Dick Jackson on Thu, 07 Nov 2013 19:27:00 GMT
View Forum Message <> Reply to Message

Oliver,

You have a good question, and I think this code illustrates it a little more
plainly, starting each time with an array of zero values:

counts=fltarr(3,3)
counts[[1,1,2],[1,1,2]] ++
Print, 'counts[[1,1,2],[1,1,2]] ++:'
Print, counts

counts=fltarr(3,3)
counts[[1,1,2],[1,1,2]] += 1
Print, 'counts[[1,1,2],[1,1,2]] += 1:'
Print, counts

counts=fltarr(3,3)
counts[[1,1,2],[1,1,2]] += [1,1,1]
Print, 'counts[[1,1,2],[1,1,2]] += [1,1,1]:'
Print, counts

counts=fltarr(3,3)
counts[[1,1,2],[1,1,2]] += [10,20,30]
Print, 'counts[[1,1,2],[1,1,2]] += [10,20,30]:'
Print, counts

The result of this is:

counts[[1,1,2],[1,1,2]] ++:
 0.000000 0.000000 0.000000
 0.000000 2.00000 0.000000
 0.000000 0.000000 1.00000
counts[[1,1,2],[1,1,2]] += 1:
 0.000000 0.000000 0.000000
 0.000000 1.00000 0.000000
 0.000000 0.000000 1.00000
counts[[1,1,2],[1,1,2]] += [1,1,1]:
 0.000000 0.000000 0.000000
 0.000000 1.00000 0.000000

Page 2 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86430#msg_86430
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86430
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 0.000000 0.000000 1.00000
counts[[1,1,2],[1,1,2]] += [10,20,30]:
 0.000000 0.000000 0.000000
 0.000000 20.0000 0.000000
 0.000000 0.000000 30.0000

It seems that ++ increments for each (x,y) pair as you expect. However, the +=
operation seems to be creating a set of result values by adding the set of
original values to the given scalar or vector, and then copying the results into
the array. In this way, when [1,1] is assigned values twice by this copying,
only the last value persists.

I seem to recall someone explaining this behaviour before, and thanks to
Russell, I realize one good way of getting *part* of what you (reasonably!) want
to do. If all of your 'e' values were equal, then you can find how many counts
of each (x,y) pair exist by using Hist_ND:
(http://tir.astro.utoledo.edu/idl/hist_nd.pro)

IDL> Print, Hist_ND(Transpose([[1,1,2],[1,1,2]]), 1, Min=0)
 0 0 0
 0 2 0
 0 0 1

But, in general, to add a varying set of 'e' values to those (x,y) locations...
I have to think a bit...

Cheers,
-Dick

Dick Jackson Software Consulting
Victoria, BC, Canada
www.d-jackson.com

oliver wrote, On 2013-11-07, 4:45am:
> Hi
>
> This may be a much answered question, but searching for an answer has failed me.
>
> I have 3 (very large) arrays giving x values, y values and energy values.
>
> I wish to create two 2d arrays - one of total (summed) energy for a particular x,y value, and one
of total counts per x,y value.
>
> An example of what I tried is below:
>
> x=[1,1,2]
> y=[1,1,2]
> e=[10,10,10]

Page 3 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> To create the 'counts' value, i used the following:
>
> counts=fltarr(5,5)
>
> counts(x,y)++
>
> This works. You end up with a value of 2 at position(1,1) and a value of 1 at position (2,2).
>
> I hoped to get the 'total energy' value by doing the following:
>
> totalenergy=fltarr(5,5)
>
> totalenergy(x,y)+=e
>
> However, this does not work. The final array only contains the last energy value added at each
point.
>
> Is there an IDL trick I'm missing that allows you to incrementally add values to an array quickly?
>
> Thanks
>
> Oliver
>

--

Cheers,
-Dick

Dick Jackson Software Consulting
Victoria, BC, Canada
www.d-jackson.com

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by Phillip Bitzer on Thu, 07 Nov 2013 20:16:48 GMT
View Forum Message <> Reply to Message

On Thursday, November 7, 2013 1:27:00 PM UTC-6, Dick Jackson wrote:

> I seem to recall someone explaining this behaviour before, and thanks to
>
> Russell, I realize one good way of getting *part* of what you (reasonably!) want
>
> to do. If all of your 'e' values were equal, then you can find how many counts
>

Page 4 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5770
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86432#msg_86432
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86432
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> of each (x,y) pair exist by using Hist_ND:
>
> (http://tir.astro.utoledo.edu/idl/hist_nd.pro)
>
> IDL> Print, Hist_ND(Transpose([[1,1,2],[1,1,2]]), 1, Min=0)
>
> But, in general, to add a varying set of 'e' values to those (x,y) locations...
>
> I have to think a bit...
>

I've got you covered....

Oliver, reverse indices are your friend here, as Russell alluded to. Get the two-dimensional
histogram, slightly modified from Dick's version:

h = HIST_ND([TRANSPOSE(x), TRANSPOSE(y)], 1, MIN=0, REVERSE_INDICES=ri)

Since you said you have large arrays, I transpose each individually, and then concatenate.

Now, go through the reverse indices:

totalE = FLTARR(SIZE(h, /DIM))
FOR i=0, N_ELEMENTS(h)-1 do if h[i] GT 0 THEN totalE[i]= TOTAL(e[ri[ri[i]:ri[i+1]-1]])

print, totalE
 0.00000 0.00000 0.00000
 0.00000 20.0000 0.00000
 0.00000 0.00000 10.0000

This is the basic idea. It can be sped up by only looping over the elements of h with non-zero
counts (as opposed to "skipping" them as I did here).

Here's some highly recommended reading on histograms:
http://www.idlcoyote.com/tips/histogram_tutorial.html

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by Dick Jackson on Thu, 07 Nov 2013 22:20:15 GMT
View Forum Message <> Reply to Message

Phillip Bitzer wrote, On 2013-11-07, 12:16pm:
> On Thursday, November 7, 2013 1:27:00 PM UTC-6, Dick Jackson wrote:
>
>> I seem to recall someone explaining this behaviour before, and thanks to
>>
>> Russell, I realize one good way of getting *part* of what you (reasonably!) want
>>

Page 5 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86433#msg_86433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86433
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> to do. If all of your 'e' values were equal, then you can find how many counts
>>
>> of each (x,y) pair exist by using Hist_ND:
>>
>> (http://tir.astro.utoledo.edu/idl/hist_nd.pro)
>>
>> IDL> Print, Hist_ND(Transpose([[1,1,2],[1,1,2]]), 1, Min=0)
>>
>> But, in general, to add a varying set of 'e' values to those (x,y) locations...
>>
>> I have to think a bit...
>>
>
> I've got you covered....
>
> Oliver, reverse indices are your friend here, as Russell alluded to. Get the two-dimensional
histogram, slightly modified from Dick's version:
>
> h = HIST_ND([TRANSPOSE(x), TRANSPOSE(y)], 1, MIN=0, REVERSE_INDICES=ri)
>
> Since you said you have large arrays, I transpose each individually, and then concatenate.
>
> Now, go through the reverse indices:
>
> totalE = FLTARR(SIZE(h, /DIM))
> FOR i=0, N_ELEMENTS(h)-1 do if h[i] GT 0 THEN totalE[i]= TOTAL(e[ri[ri[i]:ri[i+1]-1]])
>
> print, totalE
> 0.00000 0.00000 0.00000
> 0.00000 20.0000 0.00000
> 0.00000 0.00000 10.0000
>
> This is the basic idea. It can be sped up by only looping over the elements of h with non-zero
counts (as opposed to "skipping" them as I did here).
>
> Here's some highly recommended reading on histograms:
http://www.idlcoyote.com/tips/histogram_tutorial.html

Histograms and reverse-indices are amazingly powerful and the right way to go in
many tough problems, but I think Oliver is looking for a solution avoiding loops
(I am too!). If a loop solution were OK, the last block here would be more
direct, with no need for histograms:

x=[1,1,2]
y=[1,1,2]
e=[10,11,12]

counts=fltarr(3,3)

Page 6 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

counts(x,y)++
Print, 'counts:'
Print, counts ; Shows that three increments by 1 were done

totalenergy=fltarr(3,3)
totalenergy(x,y)+=e
Print, 'totalenergy:'
Print, totalenergy ; It appears that only two increments by 10 were done

totalenergy2=fltarr(3,3)
FOR i=0, N_Elements(x)-1 DO totalenergy2(x[i],y[i])+=e[i]
Print, 'totalenergy2:'
Print, totalenergy2 ; All three increments were done

... which gives us:

counts:
 0.000000 0.000000 0.000000
 0.000000 2.00000 0.000000
 0.000000 0.000000 1.00000
totalenergy:
 0.000000 0.000000 0.000000
 0.000000 11.0000 0.000000
 0.000000 0.000000 12.0000
totalenergy2:
 0.000000 0.000000 0.000000
 0.000000 21.0000 0.000000
 0.000000 0.000000 12.0000

Still looking for the "IDL way" (read: "ideal way") to do this...

--

Cheers,
-Dick

Dick Jackson Software Consulting
Victoria, BC, Canada
www.d-jackson.com

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by Michael Galloy on Thu, 07 Nov 2013 23:18:19 GMT
View Forum Message <> Reply to Message

On 11/7/13, 3:20 PM, Dick Jackson wrote:
> Phillip Bitzer wrote, On 2013-11-07, 12:16pm:
>> On Thursday, November 7, 2013 1:27:00 PM UTC-6, Dick Jackson wrote:

Page 7 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86435#msg_86435
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86435
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>
>>> I seem to recall someone explaining this behaviour before, and thanks to
>>>
>>> Russell, I realize one good way of getting *part* of what you
>>> (reasonably!) want
>>>
>>> to do. If all of your 'e' values were equal, then you can find how
>>> many counts
>>>
>>> of each (x,y) pair exist by using Hist_ND:
>>>
>>> (http://tir.astro.utoledo.edu/idl/hist_nd.pro)
>>>
>>> IDL> Print, Hist_ND(Transpose([[1,1,2],[1,1,2]]), 1, Min=0)
>>>
>>> But, in general, to add a varying set of 'e' values to those (x,y)
>>> locations...
>>>
>>> I have to think a bit...
>>>
>>
>> I've got you covered....
>>
>> Oliver, reverse indices are your friend here, as Russell alluded to.
>> Get the two-dimensional histogram, slightly modified from Dick's version:
>>
>> h = HIST_ND([TRANSPOSE(x), TRANSPOSE(y)], 1, MIN=0,
>> REVERSE_INDICES=ri)
>>
>> Since you said you have large arrays, I transpose each individually,
>> and then concatenate.
>>
>> Now, go through the reverse indices:
>>
>> totalE = FLTARR(SIZE(h, /DIM))
>> FOR i=0, N_ELEMENTS(h)-1 do if h[i] GT 0 THEN totalE[i]= TOTAL(
>> e[ri[ri[i]:ri[i+1]-1]])
>>
>> print, totalE
>> 0.00000 0.00000 0.00000
>> 0.00000 20.0000 0.00000
>> 0.00000 0.00000 10.0000
>>
>> This is the basic idea. It can be sped up by only looping over the
>> elements of h with non-zero counts (as opposed to "skipping" them as I
>> did here).
>>
>> Here's some highly recommended reading on histograms:

Page 8 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> http://www.idlcoyote.com/tips/histogram_tutorial.html
>
> Histograms and reverse-indices are amazingly powerful and the right way
> to go in many tough problems, but I think Oliver is looking for a
> solution avoiding loops (I am too!). If a loop solution were OK, the
> last block here would be more direct, with no need for histograms:
>
> x=[1,1,2]
> y=[1,1,2]
> e=[10,11,12]
>
> counts=fltarr(3,3)
> counts(x,y)++
> Print, 'counts:'
> Print, counts ; Shows that three increments by 1 were done
>
> totalenergy=fltarr(3,3)
> totalenergy(x,y)+=e
> Print, 'totalenergy:'
> Print, totalenergy ; It appears that only two increments by 10 were done
>
> totalenergy2=fltarr(3,3)
> FOR i=0, N_Elements(x)-1 DO totalenergy2(x[i],y[i])+=e[i]
> Print, 'totalenergy2:'
> Print, totalenergy2 ; All three increments were done
>
> ... which gives us:
>
> counts:
> 0.000000 0.000000 0.000000
> 0.000000 2.00000 0.000000
> 0.000000 0.000000 1.00000
> totalenergy:
> 0.000000 0.000000 0.000000
> 0.000000 11.0000 0.000000
> 0.000000 0.000000 12.0000
> totalenergy2:
> 0.000000 0.000000 0.000000
> 0.000000 21.0000 0.000000
> 0.000000 0.000000 12.0000
>
> Still looking for the "IDL way" (read: "ideal way") to do this...
>

Phillip's method loops over the bins in the histogram, so should be
reasonable. My MG_HIST_ND does the same thing:

IDL> x = [1, 1, 2]

Page 9 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

IDL> y = [1, 1, 2]
IDL> weights = [10., 11., 12.]
IDL>
IDL> h = mg_hist_nd([transpose(x), transpose(x)], weights=weights,
min=0, bin_size=1, unweighted=unweighted)
IDL> print, h
 0.00000 0.00000 0.00000
 0.00000 21.0000 0.00000
 0.00000 0.00000 12.0000
IDL> print, unweighted
 0 0 0
 0 2 0
 0 0 1

Get MG_HIST_ND on GitHub:

 https://github.com/mgalloy/mglib/blob/master/src/analysis/mg _hist_nd.pro

Mike
--
Michael Galloy
www.michaelgalloy.com
Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician
Tech-X Corporation

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by Dick Jackson on Fri, 08 Nov 2013 08:22:22 GMT
View Forum Message <> Reply to Message

Michael Galloy wrote, On 2013-11-07, 3:18pm:
> On 11/7/13, 3:20 PM, Dick Jackson wrote:
>> Phillip Bitzer wrote, On 2013-11-07, 12:16pm:
>>> On Thursday, November 7, 2013 1:27:00 PM UTC-6, Dick Jackson wrote:
>>>
>>>> I seem to recall someone explaining this behaviour before, and thanks to
>>>>
>>>> Russell, I realize one good way of getting *part* of what you
>>>> (reasonably!) want
>>>>
>>>> to do. If all of your 'e' values were equal, then you can find how
>>>> many counts
>>>>
>>>> of each (x,y) pair exist by using Hist_ND:
>>>>
>>>> (http://tir.astro.utoledo.edu/idl/hist_nd.pro)
>>>>

Page 10 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86438#msg_86438
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86438
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>> IDL> Print, Hist_ND(Transpose([[1,1,2],[1,1,2]]), 1, Min=0)
>>>>
>>>> But, in general, to add a varying set of 'e' values to those (x,y)
>>>> locations...
>>>>
>>>> I have to think a bit...
>>>>
>>>
>>> I've got you covered....
>>>
>>> Oliver, reverse indices are your friend here, as Russell alluded to.
>>> Get the two-dimensional histogram, slightly modified from Dick's version:
>>>
>>> h = HIST_ND([TRANSPOSE(x), TRANSPOSE(y)], 1, MIN=0,
>>> REVERSE_INDICES=ri)
>>>
>>> Since you said you have large arrays, I transpose each individually,
>>> and then concatenate.
>>>
>>> Now, go through the reverse indices:
>>>
>>> totalE = FLTARR(SIZE(h, /DIM))
>>> FOR i=0, N_ELEMENTS(h)-1 do if h[i] GT 0 THEN totalE[i]= TOTAL(
>>> e[ri[ri[i]:ri[i+1]-1]])
>>>
>>> print, totalE
>>> 0.00000 0.00000 0.00000
>>> 0.00000 20.0000 0.00000
>>> 0.00000 0.00000 10.0000
>>>
>>> This is the basic idea. It can be sped up by only looping over the
>>> elements of h with non-zero counts (as opposed to "skipping" them as I
>>> did here).
>>>
>>> Here's some highly recommended reading on histograms:
>>> http://www.idlcoyote.com/tips/histogram_tutorial.html
>>
>> Histograms and reverse-indices are amazingly powerful and the right way
>> to go in many tough problems, but I think Oliver is looking for a
>> solution avoiding loops (I am too!). If a loop solution were OK, the
>> last block here would be more direct, with no need for histograms:
>>
>> x=[1,1,2]
>> y=[1,1,2]
>> e=[10,11,12]
>>
>> counts=fltarr(3,3)
>> counts(x,y)++

Page 11 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Print, 'counts:'
>> Print, counts ; Shows that three increments by 1 were done
>>
>> totalenergy=fltarr(3,3)
>> totalenergy(x,y)+=e
>> Print, 'totalenergy:'
>> Print, totalenergy ; It appears that only two increments by 10 were done
>>
>> totalenergy2=fltarr(3,3)
>> FOR i=0, N_Elements(x)-1 DO totalenergy2(x[i],y[i])+=e[i]
>> Print, 'totalenergy2:'
>> Print, totalenergy2 ; All three increments were done
>>
>> ... which gives us:
>>
>> counts:
>> 0.000000 0.000000 0.000000
>> 0.000000 2.00000 0.000000
>> 0.000000 0.000000 1.00000
>> totalenergy:
>> 0.000000 0.000000 0.000000
>> 0.000000 11.0000 0.000000
>> 0.000000 0.000000 12.0000
>> totalenergy2:
>> 0.000000 0.000000 0.000000
>> 0.000000 21.0000 0.000000
>> 0.000000 0.000000 12.0000
>>
>> Still looking for the "IDL way" (read: "ideal way") to do this...
>>
>
> Phillip's method loops over the bins in the histogram, so should be reasonable.
> My MG_HIST_ND does the same thing:
>
> IDL> x = [1, 1, 2]
> IDL> y = [1, 1, 2]
> IDL> weights = [10., 11., 12.]
> IDL>
> IDL> h = mg_hist_nd([transpose(x), transpose(x)], weights=weights, min=0,
> bin_size=1, unweighted=unweighted)
> IDL> print, h
> 0.00000 0.00000 0.00000
> 0.00000 21.0000 0.00000
> 0.00000 0.00000 12.0000
> IDL> print, unweighted
> 0 0 0
> 0 2 0
> 0 0 1

Page 12 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> Get MG_HIST_ND on GitHub:
>
> https://github.com/mgalloy/mglib/blob/master/src/analysis/mg _hist_nd.pro
>
> Mike

Mike,

That's an amazing routine (thank you!), and the Weights option provides exactly
the functionality and result Oliver is looking for. However, in most of my test
cases it seems to be less efficient than the simple loop in time or space. (it's
good when the 2-D counts array is small and you don't mind using lots of memory)
Here's my test, with no idea if it covers similar scale to Oliver's application!

PRO IncrementTest

FOREACH size, [100, 1000, 10000] DO $; Width, height of (square) counts array
 FOREACH nPts, [1E6, 1E7, 4E7] DO BEGIN ; Number of points to create

 x = Long(RandomU(42L, nPts) * size)
 y = Long(RandomU(56L, nPts) * size)
 e = Long(RandomU(98L, nPts) * 10) + 1 ; Random from 1-10

 Print
 Print
 Help, size, nPts

 Print
 Print, 'MG_Hist_ND method'
 m0 = Memory(/Current)
 Tic
 countsMGhistND = mg_hist_nd([transpose(x), transpose(y)], weights=e, $
 min=0, bin_size=1) ; , unweighted=unweighted)
 Toc
 Print, (Memory(/Highwater)-m0)/(1024.^2), ' MB used'

 Print
 Print, 'Loop method'
 m0 = Memory(/Current)
 Tic
 countsLoop = LonArr(size, size) ; FltArr(size, size)
 FOR i=0, N_Elements(x)-1 DO countsLoop(x[i],y[i]) += e[i]
 Toc
 Print, (Memory(/Highwater)-m0)/(1024.^2), ' MB used'

 Print

Page 13 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 Print, 'Results are ' + $
 (Array_Equal(countsLoop, countsMGhistND) ? '' : 'not ') + 'equal!'

ENDFOREACH

END

... and results, with "better" values labeled with "*****" :

IDL> incrementtest
% Compiled module: INCREMENTTEST.

SIZE INT = 100
NPTS FLOAT = 1.00000e+006

MG_Hist_ND method
% Time elapsed: 0.23399997 seconds. *****
 19.0744 MB used

Loop method
% Time elapsed: 0.35899997 seconds.
 0.0382977 MB used *****

Results are equal!

SIZE INT = 100
NPTS FLOAT = 1.00000e+007

MG_Hist_ND method
% Time elapsed: 2.3920002 seconds. *****
 190.736 MB used

Loop method
% Time elapsed: 3.4849999 seconds.
 0.0382271 MB used *****

Results are equal!

SIZE INT = 100
NPTS FLOAT = 4.00000e+007

MG_Hist_ND method
% Time elapsed: 10.017000 seconds. *****

Page 14 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 762.940 MB used

Loop method
% Time elapsed: 14.156000 seconds.
 0.0382271 MB used *****

Results are equal!

SIZE INT = 1000
NPTS FLOAT = 1.00000e+006

MG_Hist_ND method
% Time elapsed: 1.3910000 seconds.
 26.7042 MB used

Loop method
% Time elapsed: 0.51600003 seconds. *****
 3.81478 MB used *****

Results are equal!

SIZE INT = 1000
NPTS FLOAT = 1.00000e+007

MG_Hist_ND method
% Time elapsed: 5.6570001 seconds.
 190.736 MB used

Loop method
% Time elapsed: 4.1250000 seconds. *****
 3.81478 MB used *****

Results are equal!

SIZE INT = 1000
NPTS FLOAT = 4.00000e+007

MG_Hist_ND method
% Time elapsed: 16.332000 seconds.
 762.940 MB used

Loop method
% Time elapsed: 16.274000 seconds. *****
 3.81478 MB used *****

Page 15 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Results are equal!

SIZE INT = 10000
NPTS FLOAT = 1.00000e+006

MG_Hist_ND method
% Time elapsed: 18.353000 seconds.
 1159.67 MB used

Loop method
% Time elapsed: 1.5000000 seconds. *****
 381.470 MB used *****

Results are equal!

SIZE INT = 10000
NPTS FLOAT = 1.00000e+007

MG_Hist_ND method
% Unable to allocate memory: to make array.
 Not enough space

Oliver, I hope this helps!

--

Cheers,
-Dick

Dick Jackson Software Consulting
Victoria, BC, Canada
www.d-jackson.com

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by oliver[1] on Fri, 08 Nov 2013 09:19:11 GMT
View Forum Message <> Reply to Message

Thanks for all the replies - need time to digest last one, thanks!

Dick was right in that I was trying to avoid loops.

I get the required result using

Page 16 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7907
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86439#msg_86439
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86439
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

foreach element,EnergyArray,index DO Image(XArray(index),YArray(index))+=element

but it takes ~30 seconds for the array size I am using.

Image(XArray,YArray)+=EnergyArray

takes only 1 second to run, but doesn't give the result I expected.

As I said, I haven't fully gone through Dick's last message - I just wanted to say thanks for efforts!

Oliver

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by oliver[1] on Fri, 08 Nov 2013 14:18:26 GMT
View Forum Message <> Reply to Message

Hi again - thanks for all replies especially Dick's last with all the timings, which allows me to
sheepishly admit that I solved the speed problem, but not how I expected to!

Looking at the timings, which I could match in the test program but not in my main data program, it
turns out that the single loop over the array contents was taking much longer as the array itself
was buried in a structure.

Creating a temporary array and looping over that increased the speed from ~30 seconds to ~2
seconds

The red herring was that using the non looping method, the fact that it was in a structure hadn't
affected the speed...

(Although I stand by original message that the += operator doesn't work as you might expect with
arrays!)

Thanks again

Oliver

Subject: Re: Adding x,y events to a 2d array (quickly)
Posted by Dick Jackson on Fri, 08 Nov 2013 16:11:43 GMT
View Forum Message <> Reply to Message

Oliver wrote, On 2013-11-08, 6:18am:
> Hi again - thanks for all replies especially Dick's last with all the timings, which allows me to
sheepishly admit that I solved the speed problem, but not how I expected to!
>
> Looking at the timings, which I could match in the test program but not in my main data

Page 17 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7907
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86440#msg_86440
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86440
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36017&goto=86441#msg_86441
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=86441
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

program, it turns out that the single loop over the array contents was taking much longer as the
array itself was buried in a structure.
>
> Creating a temporary array and looping over that increased the speed from ~30 seconds to ~2
seconds
>
> The red herring was that using the non looping method, the fact that it was in a structure hadn't
affected the speed...
>
> (Although I stand by original message that the += operator doesn't work as you might expect
with arrays!)
>
> Thanks again
>
> Oliver

You're most welcome. It is indeed counterintuitive that
 array[indicesWithDuplicates] ++

is not equivalent to
 array[indicesWithDuplicates] += 1

--

Cheers,
-Dick

Dick Jackson Software Consulting
Victoria, BC, Canada
www.d-jackson.com

Page 18 of 18 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

