
Subject: Re: Inaccuracies
Posted by hahn on Tue, 14 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

Andy Loughe <afl@cdc.noaa.gov> wrote:

> Ok, I am sure this has been discussed before, but let
> me start this thread again. I wish to create a 15-element
> vector which contains the numbers -1.4 to 1.4 by an increment
> of 0.2 I also wish the sum of these elements to be zero
> (No, this isn't the new math). Here is what I tried...

[remainder deleted]

All you must do is to avoid decimal fraction because our computers
use binary fractions and truncate the number. Thus you may either
multiply each number by a factor large enough to get an integral
number and divide when you print/plot the results or you treat 0.2
as 1/5 and work on that. I guess this is what packages such as
Mathematica or Maple do.

Norbert Hahn

Subject: Re: Inaccuracies
Posted by lpmix on Tue, 14 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

In article <30A7BC4D.7018@cdc.noaa.gov>, Andy Loughe <afl@cdc.noaa.gov> wrote:
>
>
> TRIAL #1
> ========
> IDL> a = findgen(15)*.2 - 1.4
> IDL> print, total(a)
> 7.15256e-07
Stuff deleted***********
>
> Maybe I am missing something here, but this kind of behavior
> makes IDL a bit problematical for scientific use. With only 15
> numbers and double precision arithmetic, I can't believe this
> would fail in FORTRAN or C!
>
> --
> Andrew F. Loughe (afl@cdc.noaa.gov)
> University of Colorado, CIRES * Campus Box 449 * Boulder, CO 80309
> phone: (303) 492-0707 fax: (303) 497-7013

Page 1 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=449
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5303#msg_5303
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5303
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=520
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5304#msg_5304
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5304
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Try
IDL> a = findgen(8)*0.2
IDL> a = [-rotate(a(1:*), 2), a]
IDL> print, total(a, /double)
 0.0000000
I'm not sure what you want to do, but expecting perfect math with
floats is not generally possible.

Paul
 ==
==================
 L. Paul Mix
 Distinguished Member of the Technical Staff
 Computational Electromagnetics and Plasma Physics Department

 //_/ _/ _/ _/ SANDIA NATIONAL LABORATORIES _/_/_/
 _/ _/_/ _/ _/ MS 1186, P.O. Box 5800 _/_/
 //_/ _/ _/ _/ _/ Albuquerque, NM 87185-1186 _/_/_/_/_/_/
 _/ _/ _/_/ _/ E-mail: lpmix@sandia.gov _/ _/_/ _/
//_/ _/ _/ _/_/_/_/ Phone: (505) 845-7493 _/ _/_/ _/
 FAX: (505) 845-7890 _/_/_/
 ==
==================

Subject: Re: Inaccuracies
Posted by Andy Loughe on Tue, 14 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

> L. Paul Mix wrote:
> I'm not sure what you want to do, but expecting perfect math with
> floats is not generally possible.

I accept the explanation given by Ken Bowman, but it is hard to
explain the values assigned to
 (1) findgen(15)*.2 -1.4 versus
 (2) dindgen(15)*(.2D)-(1.4D)
 (3) and, taken separately, the results of using the total function
 on (1) and (2) matched with the ability to perform "perfect math"
 with only 13 values.

I am describing a small permutation of inaccuracies here, (1) looks ok,
but (2) does not. total((1)) and total((2)) are not accurate for
the reasons given by Ken.

BTW one IDL user indicated that there was *no* trouble with this math on
his VMS system! Now that is interesting.

Page 2 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1250
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5306#msg_5306
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5306
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Andrew F. Loughe (afl@cdc.noaa.gov)
University of Colorado, CIRES * Campus Box 449 * Boulder, CO 80309
phone: (303) 492-0707 fax: (303) 497-7013

Subject: Re: Inaccuracies
Posted by wclodius on Tue, 14 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

Some points:

1. It is impossible in finite binary arithmetic to represent any fraction
that is not an integer multiple of a power of two. The fpu implementation
limits the integer multiples and powers of twos available for such
representations to a finite set whose size depends on whether single or
double precision is used.

2. Division by 10 involves division by a non-power of two, e.g., the
prime number five. Therefore, numbers given to the first decimal place,
e.g., 0.1, cannot in general be represented exactly, multiples of 1.0 and
0.5 are exceptions. The representation of most of the numbers therefore
will be in error by a fraction of a bit. The sum of numbers given to the
first decimal place therefore, cannot, in general, be done exactly in
either single or double precision.

3. It is possible that depending. either on the average effects of
rounding and on the order of calculations, e.g., whether the sum goes from
smallest to largest, or vice versa, the result might accidently be the
"correct" answer. On average on such a simple problem, I suspect that
single and double precision will loose the same number of bits, but
because the double precision has more initially significant bits the
relative error in double precision will usually be much smaller than in
single precision.

4. It is not generally possible for a compiler or interpreter to know the
order of operations which minimizes the error, that requires a knowlege
about the detailed properties of the specific set of numbers subject to
the operations. It is sometimes possible to use your specific knowlege of
the numbers' properties to force the compiler to perform operations in a
specific order that minimizes errors, e.g., add the numbers in the order
smallest magnitude to largest magnitude to minimize roundoffs, or if the
number come in pairs with opposite signs, add the pairs together first.
Both methods have runtime performance hits.

5. The conversion in almost any implementation of C, Fortran, or IDL,
from the base two internal representation to the base ten output,

Page 3 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5307#msg_5307
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5307
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

typically involves rounding, optimally to within the greater of the least
significant bit of the representation or the least significant digit of
the output, although that is quality of implementation dependent. This
rounding is an additional source of error that might or might not result
in the "correct" answer. For free format the least significant bit is
comparable in magnitude to the least significant digit in a high quality
implementation. For the example proplem, however, this is unlikely to be
a significant source of error in the output, as the higher order bits are
subtractted out before the output is generated.

--
 William B. Clodius Phone (505) 665-9370
 Los Alamos Natl. Lab. NIS-1 FAX (505) 665-7395
 PO Box 1663, MS-D466 Group Office (505) 667-2701

Subject: Re: Inaccuracies
Posted by thompson on Tue, 14 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

Andy Loughe <afl@cdc.noaa.gov> writes:

> Ok, I am sure this has been discussed before, but let
> me start this thread again. I wish to create a 15-element
> vector which contains the numbers -1.4 to 1.4 by an increment
> of 0.2 I also wish the sum of these elements to be zero
> (No, this isn't the new math). Here is what I tried...

> TRIAL #1
> ========
> IDL> a = findgen(15)*.2 - 1.4
> IDL> print, total(a)
> 7.15256e-07

> Hmmm! Not so good.

> Maybe I am missing something here, but this kind of behavior
> makes IDL a bit problematical for scientific use. With only 15
> numbers and double precision arithmetic, I can't believe this
> would fail in FORTRAN or C!

Here's a FORTRAN program I tried this on.

	 program test
	c
	 total = 0

Page 4 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5309#msg_5309
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5309
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	 do i = 1,15
	 a = (i-1)*0.2 - 1.4
	 total = total + a
	 enddo
	 write (*,*) total
	c
	 end

and the result of running this program?

	> a.out
	 7.1525574E-07

Exactly the same answer as IDL gives! If instead I do it in double precision,
I get

	> a.out
	 4.440892098500626E-015

Again, exactly the same answer as IDL! It appears that IDL is working
correctly within the confines of the floating point arithmetic of the computer.

Interestingly enough, the same problem done in IDL on an OpenVMS computer gives
exactly zero when done in single precision, but 8.8817842e-16 in double
precision. VMS uses a different floating point format than the standard IEEE
representation used in most modern computers.

The bottom line is that all computers are subject to round-off errors when
doing floating point arithmetic. This will occur no matter what software
package is used.

Bill Thompson

Subject: Re: Inaccuracies
Posted by Jackel on Tue, 14 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

In article <30A7BC4D.7018@cdc.noaa.gov> Andy Loughe <afl@cdc.noaa.gov> writes:

> Ok, I am sure this has been discussed before, but let
> me start this thread again. I wish to create a 15-element
> vector which contains the numbers -1.4 to 1.4 by an increment
> of 0.2 I also wish the sum of these elements to be zero
> (No, this isn't the new math). Here is what I tried...

Well, this works:
 a= (INDGEN(29) - 14) / 10.0d0

Page 5 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=313
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5311#msg_5311
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5311
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

but that still doesn't address the fundamental problem. Start with

 a= 7.0d0 * 0.2d0 which when PRINTed gives 1.4000000

then

 b= a - 1.4000000d0 when PRINTed gives 2.2204460e-016

but

 c= a
 b= a - c gives 0.0

(note that c= 1.400000d0, then b=a-c gives a non-zero result). So, it
looks like the internal representation of 7.0d0*0.2d0 is not quite 1.4,
but for display purposes IDL does a bit of rounding (truncation?).

So, try

 PRINT,a,FORMAT='(f27.25)'

and get

 1.4000000000000001000000000

which has a 1d-16 difference. The rest of the puzzle is solved by PRINTing
1.4d0 (with the FORMATing as above):

 1.3999999999999999000000000

Basically, it looks like a combination of the usual representation error,
combined with a short default format for output.

 Brian Jackel
 University of Western Ontario

Subject: Re: Inaccuracies
Posted by wclodius on Wed, 15 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

In article <48djg2$b85@post.gsfc.nasa.gov>,
thompson@orpheus.nascom.nasa.gov (William Thompson) wrote:

> <snip>
> ...Round-off errors are determined solely by the floating point

Page 6 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5294#msg_5294
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5294
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> processing done by the CPU. It was stated earlier, without testing, that IDL
> was deficient in this repect relative to Fortran or C--I showed in an earlier
> message that this was not the case.

Round off errors are the result of the algorithm, the process of
translating this algorithm into CPU and FPU operations, and FPU floating
point processing. For simple algorithms, as in the example that prompted
this thread, the translation of the algorithm for reasonable
implementations is liable to produce the same FPU processing. In such a
case you are correct. For more complicated algorithms, with optimizing
translations, that need not be the case.

--
 William B. Clodius Phone (505) 665-9370
 Los Alamos Natl. Lab. NIS-1 FAX (505) 665-7395
 PO Box 1663, MS-D466 Group Office (505) 667-2701

Subject: Re: Inaccuracies
Posted by Andy Loughe on Wed, 15 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

William Thompson wrote:

>
> I believe that I was that user. Specifically, I reported that the expected

No, it was someone else who emailed me about this issue.

> answer of 0 was seen when the calculation was done in single precision.
> However, the same was not true in double precision. The only thing this
> demonstrates is that the problems of computer round-off error shows up in
> different ways in VMS than on other computers, and is simply because of the
> difference between the VAX floating point representation and the more standard
> IEEE one. In other words, it's a hardware difference, not a software one.

That is what I have learned as well.

>
> I think the discussion of how computer round-off error manifests itself is
> interesting. However, it's important to remember that this has nothing to do
> with IDL. Round-off errors are determined solely by the floating point
> processing done by the CPU. It was stated earlier, without testing, that IDL
> was deficient in this repect relative to Fortran or C--I showed in an earlier
> message that this was not the case.

Page 7 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1250
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5295#msg_5295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5295
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> William Thompson

Agreed.

--
Andrew F. Loughe (afl@cdc.noaa.gov)
University of Colorado, CIRES * Campus Box 449 * Boulder, CO 80309
phone: (303) 492-0707 fax: (303) 497-7013

Subject: Re: Inaccuracies
Posted by thompson on Wed, 15 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

Andy Loughe <afl@cdc.noaa.gov> writes:

>> L. Paul Mix wrote:
>> I'm not sure what you want to do, but expecting perfect math with
>> floats is not generally possible.

> I accept the explanation given by Ken Bowman, but it is hard to
> explain the values assigned to
> (1) findgen(15)*.2 -1.4 versus
> (2) dindgen(15)*(.2D)-(1.4D)
> (3) and, taken separately, the results of using the total function
> on (1) and (2) matched with the ability to perform "perfect math"
> with only 13 values.

> I am describing a small permutation of inaccuracies here, (1) looks ok,
> but (2) does not. total((1)) and total((2)) are not accurate for
> the reasons given by Ken.

> BTW one IDL user indicated that there was *no* trouble with this math on
> his VMS system! Now that is interesting.

I believe that I was that user. Specifically, I reported that the expected
answer of 0 was seen when the calculation was done in single precision.
However, the same was not true in double precision. The only thing this
demonstrates is that the problems of computer round-off error shows up in
different ways in VMS than on other computers, and is simply because of the
difference between the VAX floating point representation and the more standard
IEEE one. In other words, it's a hardware difference, not a software one.

I think the discussion of how computer round-off error manifests itself is
interesting. However, it's important to remember that this has nothing to do

Page 8 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5298#msg_5298
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5298
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

with IDL. Round-off errors are determined solely by the floating point
processing done by the CPU. It was stated earlier, without testing, that IDL
was deficient in this repect relative to Fortran or C--I showed in an earlier
message that this was not the case.

William Thompson

Subject: Re: Inaccuracies
Posted by C R Shaw on Thu, 16 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

Andy Loughe wrote..

> Ok, I am sure this has been discussed before, but let
> me start this thread again. I wish to create a 15-element
> vector which contains the numbers -1.4 to 1.4 by an increment
> of 0.2 I also wish the sum of these elements to be zero
> (No, this isn't the new math). Here is what I tried...
>
> TRIAL #2
> ========
> IDL> a = dindgen(15)*(.2D)-1.4D
> IDL> print, total(a, /double)
> 4.4408921e-15
>
> Ok, this is better but not correct.
> And what are the values of a?
>
> IDL> print, a
> -1.4000000 -1.2000000 -1.0000000 -0.80000000
> -0.60000000 -0.40000000 -0.20000000 2.2204460e-16
> 0.20000000 0.40000000 0.60000000 0.80000000
> 1.0000000 1.2000000 1.4000000
>
> I seem to have lost a zero somewhere, and for me this matters!!!
> Maybe I am missing something here, but this kind of behavior
> makes IDL a bit problematical for scientific use. With only 15
> numbers and double precision arithmetic, I can't believe this
> would fail in FORTRAN or C!

I've had a similar problem with numerical accuracy.
The problem, however, appears to be in the representation
of the values using the IEEE (I think) floating point
standards.

It is also not just limited to IDL programs. The program

Page 9 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1252
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5290#msg_5290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5290
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

below is a C program to do the same calculations...

/*
 PROGRAM: test.c
 PURPOSE: Tests the numerical accuracy of C
 HISTORY: Written by Carl Shaw, Nov 1995
*/

#include <stdio.h>

main()
{
	double count, value, total;

	for (count=0.; count < 15. ;count++)
		{
		value=count*0.2-1.4;
		printf("%g ", value);
		total=total+value;
		}

	printf("\nTotal = %g \n", total);
}

And guess what the results are???

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 2.22045e-16 0.2 0.4
 0.6 0.8 1 1.2 1.4

Total = 4.44089e-15 !

Sound familiar?

For most applications though, a value of
0.000000000000004
is close enough to zero!

--
Mail : Dept. of Pure and Applied Physics,
 Queen's University Belfast,
 University Road.
 Belfast BT7 1NN
E-mail : C.Shaw@QUB.ac.uk
Phone : (01232) 245133 Ext 3045
Fax : (01232) 438918
 -- -

Page 10 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Inaccuracies
Posted by Hermann Mannstein on Thu, 16 Nov 1995 08:00:00 GMT
View Forum Message <> Reply to Message

Andy Loughe <afl@cdc.noaa.gov> wrote:
> Ok, I am sure this has been discussed before, but let
> me start this thread again. I wish to create a 15-element
> vector which contains the numbers -1.4 to 1.4 by an increment
> of 0.2 I also wish the sum of these elements to be zero
> (No, this isn't the new math). Here is what I tried...
>
>
> TRIAL #1
> ========
> IDL> a = findgen(15)*.2 - 1.4
> IDL> print, total(a)
> 7.15256e-07
>
> Hmmm! Not so good.
>
>
> TRIAL #2
> ========
> IDL> a = dindgen(15)*(.2D)-1.4D
> IDL> print, total(a, /double)
> 4.4408921e-15
>
> Ok, this is better but not correct.
> And what are the values of a?
>
> IDL> print, a
> -1.4000000 -1.2000000 -1.0000000 -0.80000000
> -0.60000000 -0.40000000 -0.20000000 2.2204460e-16
> 0.20000000 0.40000000 0.60000000 0.80000000
> 1.0000000 1.2000000 1.4000000
>
> I seem to have lost a zero somewhere, and for me this matters!!!
>
>
>
> TRIAL #3
> ========
> What if I only needed 13 numbers between -1.2 and 1.2.
> IDL> a = findgen(13)*.2 - 1.2
> IDL> print, total(a)
> 0.00000
>
> Now how can I get this to work for 15 numbers?
>

Page 11 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1195
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3618&goto=5292#msg_5292
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5292
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Maybe I am missing something here, but this kind of behavior
> makes IDL a bit problematical for scientific use. With only 15
> numbers and double precision arithmetic, I can't believe this
> would fail in FORTRAN or C!
>
> --
> Andrew F. Loughe (afl@cdc.noaa.gov)
> University of Colorado, CIRES * Campus Box 449 * Boulder, CO 80309
> phone: (303) 492-0707 fax: (303) 497-7013

It get clearer when you type:

IDL> a=indgen(15) - 7
IDL> print,double(a*.2)
 -1.4000000 -1.2000000 -1.0000000 -0.80000001
 -0.60000002 -0.40000001 -0.20000000 0.0000000
 0.20000000 0.40000001 0.60000002 0.80000001
 1.0000000 1.2000000 1.4000000
IDL>
but you get:

IDL> print,total(double(a*.2))
 0.0000000
and
IDL> print,total(a*.2D)
 -2.2204460e-16

by the way,
IDL> a=indgen(13) - 6
IDL> print,double(a*.2)
 -1.2000000 -1.0000000 -0.80000001 -0.60000002
 -0.40000001 -0.20000000 0.0000000 0.20000000
 0.40000001 0.60000002 0.80000001 1.0000000
 1.2000000
IDL>

it's the multiplication, and the 'total' works with 13 elements, because the
deviations cancel each other
--
Regards,

 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~
	Hermann Mannstein			 Tel.:	+49 8153 28-2503
	Institut fuer Physik der Atmosphaere				or -2558
	DLR - Oberpfaffenhofen			 Fax.:	+49 8153 28-1841

Page 12 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	Postfach 1116			 \	 mailto:H.Mannstein@dlr.de
	D-82230 Wessling		 \ 0 http://www.op.dlr.de/~pa64
	Germany				________\/|________
 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~`--------\--------'~ ~~~~~~~~~~~~~~~~~~~~
                                                  \

Page 13 of 13 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

