Subject: Contribution: Implementations of DCT and IDCT using length-N FFT
Posted by tom.grydeland on Fri, 14 Feb 2014 12:09:56 GMT

View Forum Message <> Reply to Message

Hello all,

| had use for DCTs, and since these are not provided in IDL, | have rolled my own, based on the
answers found here:

http://dsp.stackexchange.com/questions/2807/fast-cosine-tran sform-via-fft
and the references therein.

The code is 1D only.

| benchmarked the different approaches and found that for shorter inputs, the choice of
equivalence (length-N, length-2N pad/mirror, length 4N) didn't make much difference, but for
longer inputs (> 1000) the shorter FFT would win big.

The routine DCT implements type-1l DCT, while IDCT implements type-Ill (the common
nomenclature). Scaling is the same as used in scipy.fftpack (which is *2 the scaling used in the
Wikipedia article on DCT). When keyword /ORTHO is set, orthogonal weighting is used, making
these routines equivalent to the (i)dct routines from That Other Vectorized Language[tm].

((The function EXPIDOUBLE, if you don't have it already, simply returns DCOMPLEX(COS(arg),
SIN(arg)), which is faster than calling the complex exponential but works only for real inputs.))

| don't claim copyright on this code even if | have written it from scratch. | place it in the public
domain. If anyone wants to include it in a code collection (MGUTIL, Coyote's offerings or anything
else vaguely useful; or even in IDL itself), feel free. If anyone wants to extend it to multiple
dimensions, it should be straightforward, and | don't want any legalese to stand in their way. An
acknowledgement would be nice, though.

Regards,

Tom Grydeland, Norut AS

; doctype='rst'

+

; :Author: Tom Grydeland <tom.grydeland@norut.no>

+

; Discrete cosine transform computed using FFT of length N (Makhoul)

: Without /ortho keyword reproduces “dct” from scipy.fftpack
; (corresponding to 2*DCT-II from Wikipedia)

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36217&goto=87534#msg_87534
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=87534
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; With /ortho keyword reproduces “dct” from Matlab

; http://dsp.stackexchange.com/questions/2807/fast-cosine-tran sform-via-fft

; Type 2 DCT using length N FFT

; Signal [a, b, c, d, e, f] becomes

; [a, c, e, f, b, d]

; 1.e. the first half of the input (including the middle point,

; for odd-length input) occupies the odd positions, while the second half,
; reversed, occupies the even positions.

. [A,B,C,D,E,F]-j*[0, F, E, D, C, B]

; then take the real part to get the DCT

; :Params:

; S: required, in, type="1D array"

. :Keywords:

;ortho: optional, in, type=boolean

; if set, use orthogonal normalization (like Matlab's DCT)

function dct, s, ortho=ortho

sdim = size(s, /dim)

;; For now, 1D only

if n_elements(sdim) ne 1 then message, '1D only for now'
N = sdim[0]

N2 = N/2 + (N mod 2)
stype = size(s, /type)
u = [s[0:*:2], reverse(s[1:*:2])]
; du = 2*N*fft(u)
du = 2 * N*real_part(fft(u) * expidouble(-!pi/(2*N) * dindgen(N)))
if keyword_set(ortho) then begin
du[0] *= sqrt(1/2.)
du /= sqrt(2*N)
endif
return, du

end

; doctype='"rst'

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

+

; :Author: Tom Grydeland <tom.grydeland@norut.no>

+

; Discrete cosine transform computed using FFT of length 2N and mirroring

; Without /ortho keyword reproduces “idct” from scipy.fftpack
; (corresponding to 2*DCT-IIl from Wikipedia)

; With /ortho keyword reproduces “idct” from Matlab

; http://dsp.stackexchange.com/questions/2807/fast-cosine-tran sform-via-fft

; Type 3 DCT using length N FFT

: Use DCT, [A, B, C, D, E, F], to form
. [A,B,C,D,E, F]-j0, F, E, D, C, B]

; take the inverse FFT of that to get

, [a,c e f b, d]

; which you rearrange to form the IDCT [a, b, ¢, d, e, f]

; :Params:

;S required, in, type='1D array"'

; :Keywords:

; ortho: optional, in, type=boolean

; if set, use orthogonal normalization (like Matlab's IDCT)

function idct, s, ortho=ortho

sdim = size(s, /dim)

;; For now, 1D only

if n_elements(sdim) ne 1 then message, '1D only for now'
N = sdim[0]

t = double(s)

if keyword_set(ortho) then begin
t[0] *= sqrt(2.)
t /= sqrt(2*N)

endif

j = complex(0, 1)
u = (t - j*reverse([t[1:*], 0])) * expidouble(!pi/(2*N) * dindgen(N))

Page 3 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

u = real_part(fft(u, /inverse))

N2 = N/2 + (N mod 2)
du = dblarr(N)

du[0:*:2] = u[0:N2-1]
du[1:*:2] = reverse(u[N2:*])

return, du
end

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

