
Subject: Random-access of List() progressively slower for static list
Posted by tom.grydeland on Mon, 05 May 2014 11:34:52 GMT
View Forum Message <> Reply to Message

Hi all,

The following snippet demonstrates very peculiar complexity in IDL 8.2.2

In the first part, exchanging active and commented-out equivalent code gives equally
unsatisfactory results in the list creation phase.

List(), for all its nice properties, is not fit for (my) purpose in this version of IDL.

Regards,

Tom Grydeland, Norut

;;;;;;;;;;;;;;;;;;; Cut here ;;;;;;;;;;;;;;;;;;;;;;;
compile_opt idl2

N = 200000L
M = 5000L

print, format='(%"Creating list of %d elements")', N

values = List()
; values = List(length=N)

t0 = systime(/seconds)
for jj=0L, N-1 do begin

 ;; Nice and snappy
 values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))

 ;; Excruciatingly slow
 ; values[jj] = List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))

 if ~(jj mod M) then begin
 t1 = systime(/seconds)
 print, format='(%"Inserted %d elements, the last %d in %g seconds")', jj, M, t1-t0
 t0 = t1
 endif
endfor

itot = 0L
ftot = 0.0

;; Now see how List() deals with random access

Page 1 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36397&goto=88511#msg_88511
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=88511
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ii = fix(randomu(seed, N) * N)
for jj = 0L, N-1 do begin
 itot += values[jj, 1, 0]
 ftot += values[jj, 2, 0]
 if ~(jj mod M) then begin
 t1 = systime(/seconds)
 print, format='(%"Processed %d elements, the last %d in %g seconds")', jj, M, t1-t0
 t0 = t1
 endif
endfor

end

;;;;;;;;;;;;;;;;;;; Cut here ;;;;;;;;;;;;;;;;;;;;;;;

Typical output (limited by my impatience):

Creating list of 200000 elements
Inserted 0 elements, the last 5000 in 0.00215101 seconds
Inserted 5000 elements, the last 5000 in 0.348531 seconds
Inserted 10000 elements, the last 5000 in 0.346365 seconds
Inserted 15000 elements, the last 5000 in 0.346398 seconds
Inserted 20000 elements, the last 5000 in 0.343561 seconds
Inserted 25000 elements, the last 5000 in 0.345163 seconds
Inserted 30000 elements, the last 5000 in 0.344774 seconds
Inserted 35000 elements, the last 5000 in 0.345832 seconds
Inserted 40000 elements, the last 5000 in 0.346793 seconds
Inserted 45000 elements, the last 5000 in 0.345885 seconds
Inserted 50000 elements, the last 5000 in 0.347492 seconds
Inserted 55000 elements, the last 5000 in 0.34761 seconds
Inserted 60000 elements, the last 5000 in 0.347977 seconds
Inserted 65000 elements, the last 5000 in 0.349764 seconds
Inserted 70000 elements, the last 5000 in 0.354488 seconds
Inserted 75000 elements, the last 5000 in 0.354447 seconds
Inserted 80000 elements, the last 5000 in 0.354993 seconds
Inserted 85000 elements, the last 5000 in 0.355061 seconds
Inserted 90000 elements, the last 5000 in 0.355482 seconds
Inserted 95000 elements, the last 5000 in 0.355554 seconds
Inserted 100000 elements, the last 5000 in 0.354784 seconds
Inserted 105000 elements, the last 5000 in 0.355656 seconds
Inserted 110000 elements, the last 5000 in 0.35539 seconds
Inserted 115000 elements, the last 5000 in 0.356607 seconds
Inserted 120000 elements, the last 5000 in 0.356207 seconds
Inserted 125000 elements, the last 5000 in 0.356762 seconds
Inserted 130000 elements, the last 5000 in 0.42747 seconds
Inserted 135000 elements, the last 5000 in 0.356562 seconds
Inserted 140000 elements, the last 5000 in 0.356965 seconds
Inserted 145000 elements, the last 5000 in 0.357409 seconds

Page 2 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Inserted 150000 elements, the last 5000 in 0.356946 seconds
Inserted 155000 elements, the last 5000 in 0.356669 seconds
Inserted 160000 elements, the last 5000 in 0.356693 seconds
Inserted 165000 elements, the last 5000 in 0.356064 seconds
Inserted 170000 elements, the last 5000 in 0.357145 seconds
Inserted 175000 elements, the last 5000 in 0.356812 seconds
Inserted 180000 elements, the last 5000 in 0.35684 seconds
Inserted 185000 elements, the last 5000 in 0.358616 seconds
Inserted 190000 elements, the last 5000 in 0.357635 seconds
Inserted 195000 elements, the last 5000 in 0.358785 seconds
Processed 0 elements, the last 5000 in 0.365067 seconds
Processed 5000 elements, the last 5000 in 2.29138 seconds
Processed 10000 elements, the last 5000 in 5.68659 seconds
Processed 15000 elements, the last 5000 in 10.7704 seconds
Processed 20000 elements, the last 5000 in 24.9039 seconds
Processed 25000 elements, the last 5000 in 37.5853 seconds
Processed 30000 elements, the last 5000 in 46.8019 seconds
Processed 35000 elements, the last 5000 in 55.4 seconds
Processed 40000 elements, the last 5000 in 63.8799 seconds
Processed 45000 elements, the last 5000 in 72.3194 seconds

Subject: Re: Random-access of List() progressively slower for static list
Posted by tom.grydeland on Mon, 05 May 2014 11:59:41 GMT
View Forum Message <> Reply to Message

On Monday, May 5, 2014 11:34:52 AM UTC, Tom Grydeland wrote:
> Hi all,
>
>
>
> The following snippet demonstrates very peculiar complexity in IDL 8.2.2

Oops, too quick there. jj should be ii[jj]. Complexity no longer peculiar, only the overall slowness.

> In the first part, exchanging active and commented-out equivalent code gives equally
unsatisfactory results in the list creation phase.

This comment still holds.

> List(), for all its nice properties, is not fit for (my) purpose in this version of IDL.

This comment still holds.

> Processed 45000 elements, the last 5000 in 72.3194 seconds

With actual random access, the first 5000 accesses are all that are finished in the time I takes me
to write this:

Page 3 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36397&goto=88512#msg_88512
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=88512
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Processed 5000 elements, the last 5000 in 398.297 seconds

Tom Grydeland, Norut AS

Subject: Re: Random-access of List() progressively slower for static list
Posted by Helder Marchetto on Mon, 05 May 2014 12:25:19 GMT
View Forum Message <> Reply to Message

On Monday, May 5, 2014 1:34:52 PM UTC+2, Tom Grydeland wrote:
> Hi all,
>
>
>
> The following snippet demonstrates very peculiar complexity in IDL 8.2.2
>
>
>
> In the first part, exchanging active and commented-out equivalent code gives equally
unsatisfactory results in the list creation phase.
>
>
>
> List(), for all its nice properties, is not fit for (my) purpose in this version of IDL.
>
>
>
> Regards,
>
>
>
> Tom Grydeland, Norut
>
>
>
> ;;;;;;;;;;;;;;;;;;; Cut here ;;;;;;;;;;;;;;;;;;;;;;;
>
> compile_opt idl2
>
>
>
> N = 200000L
>
> M = 5000L
>
>
>

Page 4 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7447
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36397&goto=88514#msg_88514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=88514
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> print, format='(%"Creating list of %d elements")', N
>
>
>
> values = List()
>
> ; values = List(length=N)
>
>
>
> t0 = systime(/seconds)
>
> for jj=0L, N-1 do begin
>
>
>
> ;; Nice and snappy
>
> values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))
>
>
>
> ;; Excruciatingly slow
>
> ; values[jj] = List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))
>
>
>
> if ~(jj mod M) then begin
>
> t1 = systime(/seconds)
>
> print, format='(%"Inserted %d elements, the last %d in %g seconds")', jj, M, t1-t0
>
> t0 = t1
>
> endif
>
> endfor
>
>
>
> itot = 0L
>
> ftot = 0.0
>
>
>

Page 5 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> ;; Now see how List() deals with random access
>
> ii = fix(randomu(seed, N) * N)
>
> for jj = 0L, N-1 do begin
>
> itot += values[jj, 1, 0]
>
> ftot += values[jj, 2, 0]
>
> if ~(jj mod M) then begin
>
> t1 = systime(/seconds)
>
> print, format='(%"Processed %d elements, the last %d in %g seconds")', jj, M, t1-t0
>
> t0 = t1
>
> endif
>
> endfor
>
>
>
> end
>
>
>
> ;;;;;;;;;;;;;;;;;;; Cut here ;;;;;;;;;;;;;;;;;;;;;;;
>
>
>
> Typical output (limited by my impatience):
>
>
>
> Creating list of 200000 elements
>
> Inserted 0 elements, the last 5000 in 0.00215101 seconds
>
> Inserted 5000 elements, the last 5000 in 0.348531 seconds
>
> Inserted 10000 elements, the last 5000 in 0.346365 seconds
>
> Inserted 15000 elements, the last 5000 in 0.346398 seconds
>
> Inserted 20000 elements, the last 5000 in 0.343561 seconds
>

Page 6 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Inserted 25000 elements, the last 5000 in 0.345163 seconds
>
> Inserted 30000 elements, the last 5000 in 0.344774 seconds
>
> Inserted 35000 elements, the last 5000 in 0.345832 seconds
>
> Inserted 40000 elements, the last 5000 in 0.346793 seconds
>
> Inserted 45000 elements, the last 5000 in 0.345885 seconds
>
> Inserted 50000 elements, the last 5000 in 0.347492 seconds
>
> Inserted 55000 elements, the last 5000 in 0.34761 seconds
>
> Inserted 60000 elements, the last 5000 in 0.347977 seconds
>
> Inserted 65000 elements, the last 5000 in 0.349764 seconds
>
> Inserted 70000 elements, the last 5000 in 0.354488 seconds
>
> Inserted 75000 elements, the last 5000 in 0.354447 seconds
>
> Inserted 80000 elements, the last 5000 in 0.354993 seconds
>
> Inserted 85000 elements, the last 5000 in 0.355061 seconds
>
> Inserted 90000 elements, the last 5000 in 0.355482 seconds
>
> Inserted 95000 elements, the last 5000 in 0.355554 seconds
>
> Inserted 100000 elements, the last 5000 in 0.354784 seconds
>
> Inserted 105000 elements, the last 5000 in 0.355656 seconds
>
> Inserted 110000 elements, the last 5000 in 0.35539 seconds
>
> Inserted 115000 elements, the last 5000 in 0.356607 seconds
>
> Inserted 120000 elements, the last 5000 in 0.356207 seconds
>
> Inserted 125000 elements, the last 5000 in 0.356762 seconds
>
> Inserted 130000 elements, the last 5000 in 0.42747 seconds
>
> Inserted 135000 elements, the last 5000 in 0.356562 seconds
>
> Inserted 140000 elements, the last 5000 in 0.356965 seconds
>

Page 7 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Inserted 145000 elements, the last 5000 in 0.357409 seconds
>
> Inserted 150000 elements, the last 5000 in 0.356946 seconds
>
> Inserted 155000 elements, the last 5000 in 0.356669 seconds
>
> Inserted 160000 elements, the last 5000 in 0.356693 seconds
>
> Inserted 165000 elements, the last 5000 in 0.356064 seconds
>
> Inserted 170000 elements, the last 5000 in 0.357145 seconds
>
> Inserted 175000 elements, the last 5000 in 0.356812 seconds
>
> Inserted 180000 elements, the last 5000 in 0.35684 seconds
>
> Inserted 185000 elements, the last 5000 in 0.358616 seconds
>
> Inserted 190000 elements, the last 5000 in 0.357635 seconds
>
> Inserted 195000 elements, the last 5000 in 0.358785 seconds
>
> Processed 0 elements, the last 5000 in 0.365067 seconds
>
> Processed 5000 elements, the last 5000 in 2.29138 seconds
>
> Processed 10000 elements, the last 5000 in 5.68659 seconds
>
> Processed 15000 elements, the last 5000 in 10.7704 seconds
>
> Processed 20000 elements, the last 5000 in 24.9039 seconds
>
> Processed 25000 elements, the last 5000 in 37.5853 seconds
>
> Processed 30000 elements, the last 5000 in 46.8019 seconds
>
> Processed 35000 elements, the last 5000 in 55.4 seconds
>
> Processed 40000 elements, the last 5000 in 63.8799 seconds
>
> Processed 45000 elements, the last 5000 in 72.3194 seconds

Hi Tom,
I'm not in a position to answer your question, but I discussed lists with a friend who understands
what he's doing (at least that was the impression) and it all boils down to how lists are
implemented. In IDL you're looking at a "singly-linked list of pointers" (from
http://www.exelisvis.com/docs/LIST.html). According to Wiki, lists of this type have advantages
and of course lots of disadvantages if compared to dynamic arrays:

Page 8 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

http://en.wikipedia.org/wiki/Linked_list#Linked_lists_vs._dy namic_arrays

The performance difference between using values.add and values[jj] might be a direct reference
to the last element of the list, making therefore add faster. But that is just speculation. However, I
tested this using the following three different "add":

values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1))
values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1)), 0
values.add, List(jj, indgen(jj mod 5 + 1), findgen(jj mod 4 + 1)), jj-1

The computation times are, hmm..., quite different:
Creating list of 20000 elements
Append processing time = 0.998
Insert at beginning processing time = 0.979
Insert at end processing time = 29.334

I used "only" 20000 elements because I waited too long for the last operation.
This just confirms that adding an element at the end of the list without specifying the position is
about as fast as at the beginning (within small error). But adding element at the end of the list is
sloooow.

For testing the randomness, I used ii[jj] instead of jj and made M=500 instead of 5000. This way I
get about 20 sec/500 operations.

I hope you'll find your answers in wiki or from the tests above. What I've learned (the hard way) is
that lists in IDL should not be used for doing what arrays can do. They should only takeover when
arrays don't work well (insert elements, changes of type or array extension).

Cheers,
Helder

Subject: Re: Random-access of List() progressively slower for static list
Posted by Helder Marchetto on Mon, 05 May 2014 12:28:54 GMT
View Forum Message <> Reply to Message

> Oops, too quick there. jj should be ii[jj]. Complexity no longer peculiar, only the overall
slowness.

Just saw that you already corrected this... sorry for the double correction. However, terribly slow.

>> In the first part, exchanging active and commented-out equivalent code gives equally
unsatisfactory results in the list creation phase.
>
> This comment still holds.

I hope at least that the explanation helps (linked list)

Page 9 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7447
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36397&goto=88515#msg_88515
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=88515
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> List(), for all its nice properties, is not fit for (my) purpose in this version of IDL.
>
> This comment still holds.

Did you consider a pointer array? This should be much quicker in the random access.

>> Processed 45000 elements, the last 5000 in 72.3194 seconds
>
>
>
> With actual random access, the first 5000 accesses are all that are finished in the time I takes
me to write this:
>
>
>
> Processed 5000 elements, the last 5000 in 398.297 seconds

Yes, you were patient. I reduced 5000 to 500 and let it run only once...

Cheers,
Helder

Subject: Re: Random-access of List() progressively slower for static list
Posted by tom.grydeland on Mon, 05 May 2014 13:25:59 GMT
View Forum Message <> Reply to Message

On Monday, May 5, 2014 12:25:19 PM UTC, Helder wrote:
> In IDL you're looking at a "singly-linked list of pointers" (from
http://www.exelisvis.com/docs/LIST.html).

Or even double-linked, according to Chris Torrence:

 https://groups.google.com/d/msg/comp.lang.idl-pvwave/fVyCtoR jmoQ/iq3-xHrA368J

> According to Wiki, lists of this type have advantages and of course lots of disadvantages if
compared to dynamic arrays: http://en.wikipedia.org/wiki/Linked_list#Linked_lists_vs._dy
namic_arrays

I understand this. I suppose I'm just disappointed that IDL's implementation is so ...
underwhelming, performance-wise. Since their List and Hash datatypes appear to aim at
matching the lists and hashes of Python or Perl, they could very well have incorporated some
aspects of dynamic arrays to make them more generally useful.

> The performance difference between using values.add and values[jj] might be a direct
reference to the last element of the list, making therefore add faster. But that is just speculation.

Page 10 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7635
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36397&goto=88516#msg_88516
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=88516
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

[...]
> Append processing time = 0.998
> Insert at beginning processing time = 0.979
> Insert at end processing time = 29.334

So I think you can safely assume that the List implementation keeps track of the last element, in
order to insert quickly at the end. Furthermore, insert at a numbered node evidently doesn't check
if it'll be quicker to count from the end.

> I hope you'll find your answers in wiki or from the tests above. What I've learned (the hard way)
is that lists in IDL should not be used for doing what arrays can do. They should only takeover
when arrays don't work well (insert elements, changes of type or array extension).
>

My test was actually quite close to what I want to do. I want elements that are short lists with
heterogenous elements. I want many of them, and I want to access them at random. I know that
there are ways of doing it in IDL without waiting forever, but these ways are not as _nice_ as they
could be, using List().

> Helder

Thanks, and best regards,

--Tom Grydeland, Norut AS

Page 11 of 11 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

