Subject: Re: RSl / CreaSo survey: Whish list
Posted by steinhh on Thu, 07 Dec 1995 08:00:00 GMT

View Forum Message <> Reply to Message

In article <4adpit$svq@rs18.hrz.th-darmstadt.de>, hahn@hrz.th-darmstadt.de (Norbert Hahn)
writes:

|> | started to compile a list of improvements. Here come my thoughts,

|[> unsorted:

|>

[..specific wishes..]

|>

[>

|> More ideas ??7?

Since | can see that your wishes are along totally different directions
than mine (not that your wishes are less welcome), | thought I'd offer
my suggestions as well. I'll just copy in what | said to Creaso, so bear
with me if it's a bit wordy and unstructured (it even involves coming up
with a new pseudo-language on the fly).

1. Pointers that work like *real* pointers (handles are *almost* there,
just need some syntactic sugar on top).

E.g., if pis a pointer to a (possibly large) struct, | want to be able
to use one simple syntactic element to refer to one of it's tag values,
like a=my_function(p->tag), without having to use

HANDLE_VALUE,P,TEMP,/NO_COPY
a=my_function(TEMP.tag)
HANDLE_VALUE,P,TEMP,/SET,/NO_COPY

| can se no reason why this hasn't already been implemented, and in
my opinion this is the most serious flaw in the language. One needn't
use the construct "p->", something like "~p" or "p~" could be used
instead, to allow for a more sensible look when using pointers to

e.g., scalar variables: If p is a pointer to a scalar, then the

statement would read "a=my_function(p~)". Reference to a tag in

a structure would become ~p.tag or (perhaps less ambiguous) p~.tag.
I'm actually going to be quite disappointed if this ability is not

built into IDL pretty soon.

2. A coherent way of deciding the result dimensions in indexed operations,
plus removing the "feature" of removing all trailing singular dimensions:

If a is a fltarr(10,10) i want a([0],5) to be a fltarr(1),

a([0],[5]) to be fltarr(1,1) and a(0,5) to be a scalar.

Page 1 of 2 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=3653&goto=5353#msg_5353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5353
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

3. Possibility of Macros, e.g.:
#define ABORT(text) BEGIN & MESSAGE, TEXT,/CONTINUE & RETURN,-1 & END

4. Possibility of having widget applications + command line available
at the same time (like the help facility).

5. Different brackets for array subscripts and function calls.

6. A portable pseudo-language to produce true *compiled* subroutines,

much in the same way as CALL_EXTERNAL routines are used. This would
require strong typing of the procedure parameters + variables. In

addition, operations could be restricted to operate on scalars.

For some operations compiled code would speed up computation enormously
(e.g., taking an array a = findgen(100) and computing the array b,

where b(i) = a(0)*a(1)*a(2) a(i). This language could even

be designed to function as an "inline" language, so that | could write

e.g.,

;; Normal IDL statements
a=fltarr(10)
readu,unit,a
b=fltarr(10)
COMPILEBLOCK(A : FLTARR(N), B : FLTARR(M))
;; N and M would automatically become LONGs containing
;; the number of elements in A and B respectively.
| : LONG
J : LONG

IF M NE N THEN COMPILE_ERROR("This is not allowed to do")
B(0) =1
FOR | = 1L,M-1 DO BEGIN
B(I) = B(I-1) * A(l)
END
END

Even with a very restricted pseudo-language, which would be easy
to compile, most of the operations that would otherwise need loops
could be speeded up enormously.

Stein Vidar

Page 2 of 2 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

