
Subject: Re: Is it possible to speed up the Interpolate command?
Posted by Michael Galloy on Fri, 08 Aug 2014 00:42:44 GMT
View Forum Message <> Reply to Message

On 8/7/14, 4:11 pm, sjm7w6@gmail.com wrote:
> I've been stuck on figuring out how to speed up an interpolation
> calculation and wondered if anyone has any suggestions?
>
> Here's the situation:
>
> I have a bunch (about 450,000) of 2d matrices that I need to
> interpolate within. Within each of the matrices, I'm looking to
> interpolate for 100 x/y combinations where I want values at points
> (x_1, y_1), (x_2, y_2), etc. (I am not looking to regrid the data,
> i.e., I don't need x_1,y_2). The matrices are currently stacked in a
> datacube (dimensions are 14 x 28 x 450000). Each of the matrices has
> the same x/y locations for the points to be interpolated. I thereby
> use "interpolate" to interpolate each matrix for the 100 values and
> then loop over the 3rd dimension. This utilizes the bilinear
> interpolation. Though, I have the matrices stacked in the data cube,
> I do not want a trilinear interpolation as the 3 dimension is
> independent. Here's the current code:
>
> for i=0, numlines-1 do begin
> Values(*,i)=interpolate(datacube(*,*,i),x_loc,y_loc) endfor
>
> Numlines is the n_elements(3rd dimension), which is the 450,000
> referenced above. The x and y dimensions of the data cube are 14 and
> 28, respectively..
>
> The interpolation is taking about 2 seconds to run. I'm looking to
> find a way to trim it as much as possible...hopefully less than 0.1
> seconds. This may be difficult given that the interpolation is
> calculating 45,000,000 values.
>
> Things I've tried: 1) I first removed the interpolation from the for
> loop. However, the combination of that interpolation with reforming
> the output result into the matrix I need requires this process to
> actually take longer than the for loop above...this provides evidence
> the existence of the for loop is not the rate limiting step.
>
> 2) I rearranged the datacube into a very large 2d matrix (basically
> stacking in the 2nd dimension as opposed to creating the 3rd
> dimension). This lead to the same calculation time as the original
> way above, so no gains there..
>
> I need a bilinear interpolation due to the first two dimensions being
> linked so interpol will not work. I do not need regridded data, so I

Page 1 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5698
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36566&goto=89242#msg_89242
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=89242
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> don't think that Krig2d or bilinear offer any help.
>
> I know that I can speed up the code by simply decreasing the size of
> the 3rd dimension and/or by interpolating for less than 100 values
> per matrix, but I'm trying to avoid this.
>
> Any suggestions on how to calculate this faster?
>
> Thank you for your time.
>

You could try GPULib; it has a GPU accelerated interpolation routine.
Demo at: http://www.txcorp.com/home/gpulib. (Full disclosure: I am the
product manager for GPULib.) It only does bilinear interpolation, but it
sounds like you just want to do a stack of bilinear interpolations.

Mike
--
Michael Galloy
www.michaelgalloy.com
Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
Research Mathematician
Tech-X Corporation

Subject: Re: Is it possible to speed up the Interpolate command?
Posted by Craig Markwardt on Fri, 08 Aug 2014 02:44:29 GMT
View Forum Message <> Reply to Message

On Thursday, August 7, 2014 6:11:29 PM UTC-4, Stephen Messenger wrote:
> I've been stuck on figuring out how to speed up an interpolation calculation and wondered if
anyone has any suggestions?
>
>
>
> Here's the situation:
>
>
>
> I have a bunch (about 450,000) of 2d matrices that I need to interpolate within. Within each of
the matrices, I'm looking to interpolate for 100 x/y combinations where I want values at points
(x_1, y_1), (x_2, y_2), etc. (I am not looking to regrid the data, i.e., I don't need x_1,y_2). The
matrices are currently stacked in a datacube (dimensions are 14 x 28 x 450000). Each of the
matrices has the same x/y locations for the points to be interpolated. I thereby use "interpolate" to
interpolate each matrix for the 100 values and then loop over the 3rd dimension. This utilizes the
bilinear interpolation. Though, I have the matrices stacked in the data cube, I do not want a
trilinear interpolation as the 3 dimension is independent. Here's the current code:
>

Page 2 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36566&goto=89243#msg_89243
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=89243
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
> for i=0, numlines-1 do begin
>
> Values(*,i)=interpolate(datacube(*,*,i),x_loc,y_loc)
>
> endfor
>
>
>
> Numlines is the n_elements(3rd dimension), which is the 450,000 referenced above. The x and
y dimensions of the data cube are 14 and 28, respectively.
>
>
>
> The interpolation is taking about 2 seconds to run. I'm looking to find a way to trim it as much
as possible...hopefully less than 0.1 seconds. This may be difficult given that the interpolation is
calculating 45,000,000 values.
>
>
>
> Things I've tried:
>
> 1) I first removed the interpolation from the for loop. However, the combination of that
interpolation with reforming the output result into the matrix I need requires this process to actually
take longer than the for loop above...this provides evidence the existence of the for loop is not the
rate limiting step.
>
>
>
> 2) I rearranged the datacube into a very large 2d matrix (basically stacking in the 2nd
dimension as opposed to creating the 3rd dimension). This lead to the same calculation time as
the original way above, so no gains there.
>
>
>
> I need a bilinear interpolation due to the first two dimensions being linked so interpol will not
work. I do not need regridded data, so I don't think that Krig2d or bilinear offer any help.
>
>
>
> I know that I can speed up the code by simply decreasing the size of the 3rd dimension and/or
by interpolating for less than 100 values per matrix, but I'm trying to avoid this.

Turn your problem around. Right now you are interpolating 100 points in FOR loop with 450000
iterations. Instead, you should be doing a FOR loop of 100 iterations for 450000 points each. It
will be much faster.

Page 3 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Bilinear interpolation involves some simple mathematics with linear weighting factors. See the
wikipedia page. You don't need to use INTERPOLATE().

Something like this should do the trick...
for i = 0, 99 do begin
 x_loci = x_loc[i]
 y_loci = y_loc[i]

 i0 = floor(x_loci) & i1 = i0+1
 j0 = floor(y_loci) & j1 = j0+1

 u = x_loci - i0
 v = y_loci - j0
 values(i,*) = datacube(i0,j0,*)*(1-u)*(1-v) + datacube(i1,j0,*)*u*(1-v) + $
 datacube(i0,j1)*(1-u)*v + datacube(i1,j1)*u*v
endfor

Oh by the way if REFORM() is limiting you, then you should probably be using
REFORM(...,/OVERWRITE).

Craig

Subject: Re: Is it possible to speed up the Interpolate command?
Posted by wlandsman on Fri, 08 Aug 2014 02:52:37 GMT
View Forum Message <> Reply to Message

On Thursday, August 7, 2014 6:11:29 PM UTC-4, Stephen Messenger wrote:
> I've been stuck on figuring out how to speed up an interpolation calculation and wondered if
anyone has any suggestions?

> for i=0, numlines-1 do begin
> Values(*,i)=interpolate(datacube(*,*,i),x_loc,y_loc)
> endfor

One suggestion is to replace the above with

for i=0,numlines-1 do begin
 values[0,i] = interpolate(data cube[*,*,i],x_loc,y_loc)
endfor

https://www.idlcoyote.com/code_tips/asterisk.html

You might also find a slight speed improvement with by writing

for i=0,numlines-1 do $
 values[0,i] = interpolate(data cube[*,*,i],x_loc,y_loc)

Page 4 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3563
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36566&goto=89244#msg_89244
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=89244
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

though the improvement will be less than it was in old versions of IDL.

Subject: Re: Is it possible to speed up the Interpolate command?
Posted by Stephen Messenger on Fri, 08 Aug 2014 23:18:44 GMT
View Forum Message <> Reply to Message

On Thursday, August 7, 2014 8:42:44 PM UTC-4, Mike Galloy wrote:
> On 8/7/14, 4:11 pm, sjm7w6@gmail.com wrote:
>
>> I've been stuck on figuring out how to speed up an interpolation
>
>> calculation and wondered if anyone has any suggestions?
>
>>
>
>> Here's the situation:
>
>>
>
>> I have a bunch (about 450,000) of 2d matrices that I need to
>
>> interpolate within. Within each of the matrices, I'm looking to
>
>> interpolate for 100 x/y combinations where I want values at points
>
>> (x_1, y_1), (x_2, y_2), etc. (I am not looking to regrid the data,
>
>> i.e., I don't need x_1,y_2). The matrices are currently stacked in a
>
>> datacube (dimensions are 14 x 28 x 450000). Each of the matrices has
>
>> the same x/y locations for the points to be interpolated. I thereby
>
>> use "interpolate" to interpolate each matrix for the 100 values and
>
>> then loop over the 3rd dimension. This utilizes the bilinear
>
>> interpolation. Though, I have the matrices stacked in the data cube,
>
>> I do not want a trilinear interpolation as the 3 dimension is
>
>> independent. Here's the current code:
>
>>
>
>> for i=0, numlines-1 do begin
>

Page 5 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36566&goto=89254#msg_89254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=89254
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> Values(*,i)=interpolate(datacube(*,*,i),x_loc,y_loc) endfor
>
>>
>
>> Numlines is the n_elements(3rd dimension), which is the 450,000
>
>> referenced above. The x and y dimensions of the data cube are 14 and
>
>> 28, respectively..
>
>>
>
>> The interpolation is taking about 2 seconds to run. I'm looking to
>
>> find a way to trim it as much as possible...hopefully less than 0.1
>
>> seconds. This may be difficult given that the interpolation is
>
>> calculating 45,000,000 values.
>
>>
>
>> Things I've tried: 1) I first removed the interpolation from the for
>
>> loop. However, the combination of that interpolation with reforming
>
>> the output result into the matrix I need requires this process to
>
>> actually take longer than the for loop above...this provides evidence
>
>> the existence of the for loop is not the rate limiting step.
>
>>
>
>> 2) I rearranged the datacube into a very large 2d matrix (basically
>
>> stacking in the 2nd dimension as opposed to creating the 3rd
>
>> dimension). This lead to the same calculation time as the original
>
>> way above, so no gains there..
>
>>
>
>> I need a bilinear interpolation due to the first two dimensions being
>
>> linked so interpol will not work. I do not need regridded data, so I
>

Page 6 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> don't think that Krig2d or bilinear offer any help.
>
>>
>
>> I know that I can speed up the code by simply decreasing the size of
>
>> the 3rd dimension and/or by interpolating for less than 100 values
>
>> per matrix, but I'm trying to avoid this.
>
>>
>
>> Any suggestions on how to calculate this faster?
>
>>
>
>> Thank you for your time.
>
>>
>
>
>
> You could try GPULib; it has a GPU accelerated interpolation routine.
>
> Demo at: http://www.txcorp.com/home/gpulib. (Full disclosure: I am the
>
> product manager for GPULib.) It only does bilinear interpolation, but it
>
> sounds like you just want to do a stack of bilinear interpolations.
>
>
>
> Mike
>
> --
>
> Michael Galloy
>
> www.michaelgalloy.com
>
> Modern IDL: A Guide to IDL Programming (http://modernidl.idldev.com)
>
> Research Mathematician
>
> Tech-X Corporation

Hi Mike,

Page 7 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

I'm going to check if that will work for me. Thank you for that suggestion.

Thanks!

Stephen

Subject: Re: Is it possible to speed up the Interpolate command?
Posted by Stephen Messenger on Fri, 08 Aug 2014 23:19:23 GMT
View Forum Message <> Reply to Message

On Thursday, August 7, 2014 10:52:37 PM UTC-4, wlandsman wrote:
> On Thursday, August 7, 2014 6:11:29 PM UTC-4, Stephen Messenger wrote:
>
>> I've been stuck on figuring out how to speed up an interpolation calculation and wondered if
anyone has any suggestions?
>
>
>
>> for i=0, numlines-1 do begin
>
>> Values(*,i)=interpolate(datacube(*,*,i),x_loc,y_loc)
>
>> endfor
>
>
>
> One suggestion is to replace the above with
>
>
>
> for i=0,numlines-1 do begin
>
> values[0,i] = interpolate(data cube[*,*,i],x_loc,y_loc)
>
> endfor
>
>
>
> https://www.idlcoyote.com/code_tips/asterisk.html
>
>
>
> You might also find a slight speed improvement with by writing
>
>
>
> for i=0,numlines-1 do $

Page 8 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36566&goto=89255#msg_89255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=89255
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> values[0,i] = interpolate(data cube[*,*,i],x_loc,y_loc)
>
>
>
> though the improvement will be less than it was in old versions of IDL.

Hi all,

Thank you for the suggestions.

Mike: I'm going to check if that will work for me. Thank you for that suggestion.

Craig: I followed the code you wrote below and the math and reasoning makes sense. However,
it actually takes almost 5 times longer to run. I'm thinking that this may have to do with the
"values" line that requires accessing entries within the large data cube. I'm hammering away at
figuring out how to modify the suggested method to calculate faster, but wanted to check if there
were any suggestions? Thank you for your help!

wlandsman: I hadn't seen that trick yet. Thank you for the suggestion! I didn't detect a bump in
speed, but I'm using 8.1, so maybe they fixed it since the earlier versions.

I haven't been able to find the source code for INTERPOLATE within the IDL lib files. If you
happen to know how to dig that source code out of IDL, I would definitely appreciate the expertise.

Thanks!

Stephen

Subject: Re: Is it possible to speed up the Interpolate command?
Posted by Stephen Messenger on Fri, 15 Aug 2014 00:04:05 GMT
View Forum Message <> Reply to Message

On Friday, August 8, 2014 7:19:23 PM UTC-4, Stephen Messenger wrote:
> On Thursday, August 7, 2014 10:52:37 PM UTC-4, wlandsman wrote:
>
>> On Thursday, August 7, 2014 6:11:29 PM UTC-4, Stephen Messenger wrote:
>
>>
>
>>> I've been stuck on figuring out how to speed up an interpolation calculation and wondered if
anyone has any suggestions?
>
>>
>
>>

Page 9 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8069
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36566&goto=89299#msg_89299
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=89299
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>>> for i=0, numlines-1 do begin
>
>>
>
>>> Values(*,i)=interpolate(datacube(*,*,i),x_loc,y_loc)
>
>>
>
>>> endfor
>
>>
>
>>
>
>>
>
>> One suggestion is to replace the above with
>
>>
>
>>
>
>>
>
>> for i=0,numlines-1 do begin
>
>>
>
>> values[0,i] = interpolate(data cube[*,*,i],x_loc,y_loc)
>
>>
>
>> endfor
>
>>
>
>>
>
>>
>
>> https://www.idlcoyote.com/code_tips/asterisk.html
>
>>
>
>>

Page 10 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>>
>
>> You might also find a slight speed improvement with by writing
>
>>
>
>>
>
>>
>
>> for i=0,numlines-1 do $
>
>>
>
>> values[0,i] = interpolate(data cube[*,*,i],x_loc,y_loc)
>
>>
>
>>
>
>>
>
>> though the improvement will be less than it was in old versions of IDL.
>
>
>
> Hi all,
>
>
>
> Thank you for the suggestions.
>
>
>
> Mike: I'm going to check if that will work for me. Thank you for that suggestion.
>
>
>
> Craig: I followed the code you wrote below and the math and reasoning makes sense.
However, it actually takes almost 5 times longer to run. I'm thinking that this may have to do with
the "values" line that requires accessing entries within the large data cube. I'm hammering away
at figuring out how to modify the suggested method to calculate faster, but wanted to check if
there were any suggestions? Thank you for your help!
>
>
>
> wlandsman: I hadn't seen that trick yet. Thank you for the suggestion! I didn't detect a bump in

Page 11 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

speed, but I'm using 8.1, so maybe they fixed it since the earlier versions.
>
>
>
> I haven't been able to find the source code for INTERPOLATE within the IDL lib files. If you
happen to know how to dig that source code out of IDL, I would definitely appreciate the expertise.

>
>
>
> Thanks!
>
>
>
> Stephen

Hi all,

Interestingly, for the bilinear interpolation, if you rearrange the datacube to put the longest
dimension (in this case, the 450,000) first, then that code calculates about 5 times faster.

Stephen

Page 12 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

