Subject: PLOT3D format input

Posted by lucesmm on Wed, 18 Mar 2015 01:04:21 GMT

View Forum Message <> Reply to Message

Hello

I am using PLOT3D

and when the format of my x,y,z vectors is

X FLOAT = Array[200] Y FLOAT = Array[200] Z FLOAT = Array[200]

it works

Now, when the format of the vectors is

X FLOAT = Array[1, 108] Y FLOAT = Array[1, 108] Z FLOAT = Array[1, 108]

it doesn't work and IDL says that

% Expression must be a scalar or 1 element array in this context: <BYTE Array[2]>

any idea what is happening, my original data is in a (9,108) array. how do I convert them ... this is similar to my code, t is generated from other software

```
t=FINDGEN(5,200)

x = COS(t) * (1 + t / 10)

help, x

p = PLOT3D(x(0,*), x(1,*), x(2,*),'o')

t=FINDGEN(5,200)

x = t(1,*)

y = t(2,*)

z = t(3,*)

help, x,y,z

p = PLOT3D(x, y, z,'o')
```

Subject: Re: PLOT3D format input

Posted by Matthew Argall on Wed, 18 Mar 2015 02:49:46 GMT

View Forum Message <> Reply to Message

```
> t=FINDGEN(5,200)
> x = t(1,*)
> y = t(2,*)
> z = t(3,*)
```

```
> > p = PLOT3D(x, y, z,'o')
```

I have found that function graphics are particularly picky about whether you pass them a column vector or row vector. Problems arise when you pass data in as a row vector (a 1xN array, as you are doing above). The solution is to reform your data into a column vector (Nx1 array), like so

```
x = reform(t[1,*])
y = reform(t[2,*])
z = reform(t[3,*])
p = plot3d(x, y, z, 'o')
```

Subject: Re: PLOT3D format input Posted by David Fanning on Wed, 18 Mar 2015 03:17:38 GMT

View Forum Message <> Reply to Message

Matthew Argall writes:

```
>> t=FINDGEN(5,200)
>> x = t(1,*)
>> y = t(2,*)
>> z = t(3,*)
>>
\Rightarrow p = PLOT3D(x, y, z,'o')
> I have found that function graphics are particularly picky about whether you pass them a
column vector or row vector. Problems arise when you pass data in as a row vector (a 1xN array,
as you are doing above). The solution is to reform your data into a column vector (Nx1 array), like
SO
>
> x = reform(t[1,*])
> y = reform(t[2,*])
> z = reform(t[3,*])
> p = plot3d(x, y, z, 'o')
Actually, visa versa, but we get the idea. :-)
 x = t[1,*] is a column vector.
 y = Reform(t[2,*]) is a row vector.
```

Cheers,

David

David Fanning, Ph.D. Fanning Software Consulting, Inc. Coyote's Guide to IDL Programming: http://www.idlcoyote.com/ Sepore ma de ni thue. ("Perhaps thou speakest truth.")

Subject: Re: PLOT3D format input Posted by Matthew Argall on Wed, 18 Mar 2015 13:11:30 GMT View Forum Message <> Reply to Message

Doh! That always gets me. A row vector is a vector full of columns and a column vector is vector full of rows ;-)

Subject: Re: PLOT3D format input Posted by Paul Van Delst[1] on Wed, 18 Mar 2015 19:38:51 GMT View Forum Message <> Reply to Message

Hello,

```
On 03/17/15 22:49, Matthew Argall wrote:
>> t=FINDGEN(5,200)
>> x = t(1,*)
>> y = t(2,*)
>> z = t(3,*)
\Rightarrow p = PLOT3D(x, y, z,'o')
>
> I have found that function graphics are particularly picky about
> whether you pass them a column vector or row vector. Problems arise when
> you pass data in as a row vector (a 1xN array, as you are doing above).
> The solution is to reform your data into a column vector (Nx1 array).
> like so
> x = reform(t[1,*])
> y = reform(t[2,*])
> z = reform(t[3,*])
> p = plot3d(x, y, z, 'o')
```

Matthew's suggestion is a good one, but being the memory-layout-worrier that I am (preferring t[*,0] over t[0,*]), I would simply transpose the "t" array directly after reading it in from wherever it was created,

```
The original data...
IDL > t = findgen(5,200)
IDL> help, t
Т
          FLOAT
                     = Array[5, 200]
IDL> print, t[0,*]
    0.00000
    5.00000
    10.0000
    15.0000
    20.0000
    25.0000
    30.0000
    35.0000
    40.0000
    45.0000
    . . . . .
Transpose it for all subsequent use:
IDL > t = transpose(t)
IDL> help, t
          FLOAT
                     = Array[200, 5]
IDL> print, t[*,0]
    0.00000
                5.00000
                            10.0000
                                        15.0000
                                                    20.0000
    25.0000
                30.0000
                            35.0000
                                        40.0000
                                                    45.0000
When the trailing dimension is the degenerate one, IDL happily ignores
it....
IDL > x = COS(t) * (1 + t / 10)
IDL> help, x
          FLOAT
Χ
                     = Array[200, 5]
```

Subject: Re: PLOT3D format input Posted by lucesmm on Thu, 19 Mar 2015 23:24:50 GMT

View Forum Message <> Reply to Message

IDL> p = PLOT3D(x[*,0], x[*,1], x[*,2], o')

cheers,

paulv

On Wednesday, March 18, 2015 at 12:38:53 PM UTC-7, Paul van Delst wrote:

```
> Hello,
> On 03/17/15 22:49, Matthew Argall wrote:
>>> t=FINDGEN(5,200)
>>> x = t(1,*)
>>> y = t(2,*)
>>> z = t(3,*)
>>>
>>> p = PLOT3D(x, y, z, 'o')
>>
>>
>> I have found that function graphics are particularly picky about
>> whether you pass them a column vector or row vector. Problems arise when
>> you pass data in as a row vector (a 1xN array, as you are doing above).
>> The solution is to reform your data into a column vector (Nx1 array),
>> like so
>>
>> x = reform(t[1,*])
>> y = reform(t[2,*])
>> z = reform(t[3,*])
>>
>> p = plot3d(x, y, z, 'o')
>
  Matthew's suggestion is a good one, but being the memory-layout-worrier
  that I am (preferring t[*,0] over t[0,*]), I would simply transpose the
  "t" array directly after reading it in from wherever it was created,
  The original data...
>
> IDL> t = findgen(5,200)
> IDL> help. t
> T
             FLOAT
                        = Array[5, 200]
  IDL> print, t[0,*]
       0.00000
       5.00000
>
       10.0000
>
       15.0000
>
       20.0000
>
       25.0000
>
       30.0000
>
       35.0000
>
       40.0000
>
       45.0000
>
>
  Transpose it for all subsequent use:
>
  IDL > t = transpose(t)
```

```
> IDL> help, t
                      = Array[200, 5]
             FLOAT
> IDL> print, t[*,0]
      0.00000
                  5.00000
                              10.0000
                                         15.0000
                                                     20.0000
>
                  30.0000
      25.0000
                              35.0000
                                         40.0000
                                                     45.0000
>
>
>
> When the trailing dimension is the degenerate one, IDL happily ignores
>
> IDL> x = COS(t) * (1 + t / 10)
> IDL> help, x
> X
             FLOAT
                       = Array[200, 5]
> IDL> p = PLOT3D(x[*,0], x[*,1], x[*,2], o')
>
>
> cheers,
>
> paulv
Thank you
Now I can plot it.
```

Sometimes I don't understand how this formatting works...

-LMM