
Subject: 3D point cloud visualization: filled polygons in the front, different fill colour +
lines in the back
Posted by Nuno Ferreira on Mon, 25 May 2015 17:56:29 GMT
View Forum Message <> Reply to Message

Hi all,

I am trying to visualize 3D point clouds taken with a Kinect v2 camera. My data consist of a set of
vertices in 3D space (xyz + RGBA) with connectivity information (polygons). Suppose I take a
photo of someone, with depth information, from a single position: looking from the front, I would
see a normal photo, but it could be rotated all around, allowing to see the back (I would have the
polygons only from the half-surface that was facing the camera). I am trying to visualize this
dataset using filled polygons in the front side (without lines) and shades of grey + lines in the back
face.

I tried a few options but each has specific problems (please see the screenshot:
 https://drive.google.com/file/d/0B6Ti5FMqve-dRzRuMk9yY1FjM2c /view?usp=sharing - you can
also run the program below):

- in option 1, it is difficult to distinguish the back face from the front face and that is why I would
prefer using a single color for the back face (e.g., grey, eventually shaded + lines);

- in options 1 and 2, the lines in the front side cover the filled polygons and since the density of
vertices is large I would see mainly black lines that would at least partially hide the colors of the
polygons;

- option 3 is almost what I would like, but I would prefer having the lines in the back face with a
single color. Do you have any suggestions?

I am also aware that I could either offset or scale the vertices positions to avoid covering the lines
with the polygons but I would prefer a solution that does not change these positions.
Many thanks and sorry for the long message!

Nuno

PRO question_example_event, ev
; (not really needed for this example)
END

PRO question_example
; create a test object
vertices = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0.5, 0.5, 1]]
connectivity = [3, 0, 1, 4, $
 3, 1, 2, 4, $

Page 1 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91011#msg_91011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91011
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 3, 2, 3, 4, $
 3, 3, 0, 4]
vert_colors = [[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]]

; Initialize model for display (2 views).
oModel1 = OBJ_NEW('IDLgrModel')
oModel2 = OBJ_NEW('IDLgrModel')

; Initialize polygon and/or polyline
option=4
CASE option of

 1: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 2: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=1)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 3: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=1)
 oPolygon2 = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, STYLE=2, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=0)
 end
endcase

; Add the polygon(s) and/or polyline to the model.
oModel1 -> Add, oPolygon
if option EQ 1 or option EQ 2 then oModel1 -> Add, oPolyline
if option EQ 3 then oModel1 -> Add, oPolygon2
oModel2.Add, oModel1, /alias ; create an alias for 2nd model

; used for display:

Page 2 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ov1 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2)
ov1.add, oModel1
ov2 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2)
ov2.add, oModel2

; create GUI
s = 256
base = widget_base(/row, Title='Option '+string(option))
d1 = widget_draw(base, graphics_level=2, $
		xsize=s, ysize=s, tooltip="Front")
d2 = widget_draw(base, graphics_level=2, $
		xsize=s, ysize=s, tooltip="Back")

; show GUI and model
widget_control, base, /realize
widget_control, d1, get_value=ow1
widget_control, d2, get_value=ow2
oModel1 -> Rotate, [1, 0, 0], 45 ; Rotate to better show the front side
ow1.setproperty, graphics_tree=ov1
ow1.draw
oModel1 -> Rotate, [1, 0, 0], 180 ; Rotate again to show the back side
ow2.setproperty, graphics_tree=ov2
ow2.draw

xmanager, 'question_example', base
END

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Nuno Ferreira on Mon, 25 May 2015 18:01:02 GMT
View Forum Message <> Reply to Message

> ; Initialize polygon and/or polyline
> option=4

I am sorry, "option" should be 1, 2 or 3.

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Nuno Ferreira on Mon, 25 May 2015 18:10:47 GMT
View Forum Message <> Reply to Message

And there was another error, sorry (wrong version...)! Here is the right version:

Page 3 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91012#msg_91012
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91012
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91013#msg_91013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91013
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO question_example_event, ev
; (not really needed for this example)
END

PRO question_example
; create a test object
vertices = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0.5, 0.5, 1]]
connectivity = [3, 0, 1, 4, $
 3, 1, 2, 4, $
 3, 2, 3, 4, $
 3, 3, 0, 4]
vert_colors = [[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]]

; Initialize model for display (2 views).
oModel1 = OBJ_NEW('IDLgrModel')
oModel2 = OBJ_NEW('IDLgrModel')

; Initialize polygon and/or polyline
option=3
CASE option of

 1: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 2: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=1)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 3: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, STYLE=2, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=1)
 oPolygon2 = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, STYLE=1, $
 vert_colors=vert_colors, $

Page 4 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 depth_offset=0)
 end
endcase

; Add the polygon(s) and/or polyline to the model.
oModel1 -> Add, oPolygon
if option EQ 1 or option EQ 2 then oModel1 -> Add, oPolyline
if option EQ 3 then oModel1 -> Add, oPolygon2
oModel2.Add, oModel1, /alias ; create an alias for 2nd model

; used for display:
ov1 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2.1)
ov1.add, oModel1
ov2 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2.1)
ov2.add, oModel2

; create GUI
s = 256
base = widget_base(/row, Title='Option '+string(option))
d1 = widget_draw(base, graphics_level=2, xsize=s, ysize=s, tooltip="Front")
d2 = widget_draw(base, graphics_level=2, xsize=s, ysize=s, tooltip="Back")

; show GUI and model
widget_control, base, /realize
widget_control, d1, get_value=ow1
widget_control, d2, get_value=ow2
oModel1 -> Rotate, [1, 0, 0], 45 ; Rotate to better show the front side
ow1.setproperty, graphics_tree=ov1
ow1.draw
oModel1 -> Rotate, [1, 0, 0], 180 ; Rotate again to show the back side
ow2.setproperty, graphics_tree=ov2
ow2.draw

xmanager, 'question_example', base
END

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Dick Jackson on Tue, 26 May 2015 01:03:26 GMT
View Forum Message <> Reply to Message

Hi Nuno,

You're nearly there, with option 3... on the oPolygon2, you had VERT_COLORS set, which gave
every vertex its own colour, but if you just remove that, the lines will be black. Or, if you want a
certain colour to be used (with this STYLE=1 wireframe), COLOR=[r,g,b] works, as does
VERT_COLORS with a single [r,g,b] triple. I would go with COLOR as the simpler option.

Page 5 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91014#msg_91014
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91014
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Nice job!

Cheers,
-Dick

Dick Jackson Software Consulting Inc.
Victoria, BC, Canada --- http://www.d-jackson.com

On Monday, 25 May 2015 11:10:48 UTC-7, Nuno Ferreira wrote:
> And there was another error, sorry (wrong version...)! Here is the right version:
>
>
>
> PRO question_example_event, ev
> ; (not really needed for this example)
> END
>
>
> PRO question_example
> ; create a test object
> vertices = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0.5, 0.5, 1]]
> connectivity = [3, 0, 1, 4, $
> 3, 1, 2, 4, $
> 3, 2, 3, 4, $
> 3, 3, 0, 4]
> vert_colors = [[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]]
>
> ; Initialize model for display (2 views).
> oModel1 = OBJ_NEW('IDLgrModel')
> oModel2 = OBJ_NEW('IDLgrModel')
>
> ; Initialize polygon and/or polyline
> option=3
> CASE option of
>
> 1: begin
> oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
> POLYGONS = connectivity, SHADING=1, $
> vert_colors=vert_colors)
> oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
> POLYLINES = connectivity, COLOR = [0, 0, 0])
> end
>
> 2: begin
> oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
> POLYGONS = connectivity, SHADING=1, $
> vert_colors=vert_colors, bottom=[200,200,200], $

Page 6 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> depth_offset=1)
> oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
> POLYLINES = connectivity, COLOR = [0, 0, 0])
> end
>
> 3: begin
> oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
> POLYGONS = connectivity, SHADING=1, STYLE=2, $
> vert_colors=vert_colors, bottom=[200,200,200], $
> depth_offset=1)
> oPolygon2 = OBJ_NEW('IDLgrPolygon', vertices, $
> POLYGONS = connectivity, SHADING=1, STYLE=1, $
> vert_colors=vert_colors, $
> depth_offset=0)
> end
> endcase
>
> ; Add the polygon(s) and/or polyline to the model.
> oModel1 -> Add, oPolygon
> if option EQ 1 or option EQ 2 then oModel1 -> Add, oPolyline
> if option EQ 3 then oModel1 -> Add, oPolygon2
> oModel2.Add, oModel1, /alias ; create an alias for 2nd model
>
> ; used for display:
> ov1 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2.1)
> ov1.add, oModel1
> ov2 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2.1)
> ov2.add, oModel2
>
> ; create GUI
> s = 256
> base = widget_base(/row, Title='Option '+string(option))
> d1 = widget_draw(base, graphics_level=2, xsize=s, ysize=s, tooltip="Front")
> d2 = widget_draw(base, graphics_level=2, xsize=s, ysize=s, tooltip="Back")
>
> ; show GUI and model
> widget_control, base, /realize
> widget_control, d1, get_value=ow1
> widget_control, d2, get_value=ow2
> oModel1 -> Rotate, [1, 0, 0], 45 ; Rotate to better show the front side
> ow1.setproperty, graphics_tree=ov1
> ow1.draw
> oModel1 -> Rotate, [1, 0, 0], 180 ; Rotate again to show the back side
> ow2.setproperty, graphics_tree=ov2
> ow2.draw
>
> xmanager, 'question_example', base
> END

Page 7 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Nuno Ferreira on Tue, 26 May 2015 08:14:52 GMT
View Forum Message <> Reply to Message

Thanks Dick, but in that case the black lines are drawn also in the front face, hiding the colors of
the polygons (and with thousands of very small polygons, one would see mainly black in the
front... you can see a sample of my data here, shown with option 3:
https://drive.google.com/file/d/0B6Ti5FMqve-da0RXNllHUFJfSlk /view?usp=sharing).

What I would like to have, looking at the other image (
https://drive.google.com/file/d/0B6Ti5FMqve-dRzRuMk9yY1FjM2c /view) is this: option 3 in the
front and option 2 in the back.

In more general terms, I guess I would like to have the possibility of viewing points, lines and filled
polygons with certain settings in the front face, and different settings in the back face.

Many thanks!

Nuno

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Dick Jackson on Tue, 26 May 2015 17:27:50 GMT
View Forum Message <> Reply to Message

On Tuesday, 26 May 2015 01:14:55 UTC-7, Nuno Ferreira wrote:
> Thanks Dick, but in that case the black lines are drawn also in the front face, hiding the colors
of the polygons (and with thousands of very small polygons, one would see mainly black in the
front... you can see a sample of my data here, shown with option 3:
https://drive.google.com/file/d/0B6Ti5FMqve-da0RXNllHUFJfSlk /view?usp=sharing).

Ah, of course. :-)

> What I would like to have, looking at the other image (
https://drive.google.com/file/d/0B6Ti5FMqve-dRzRuMk9yY1FjM2c /view) is this: option 3 in the
front and option 2 in the back.
>
> In more general terms, I guess I would like to have the possibility of viewing points, lines and
filled polygons with certain settings in the front face, and different settings in the back face.

Then I think we have to get tricky... To avoid the wireframe lines showing through to the *front*,
we can't use DEPTH_OFFSET in a way that works from every point of view (DEPTH_OFFSET
lets you push one object's apparent draw-ordering "away" from you at all times). Here's a way to
make a shifted set of vertices for the wireframe that is always "inside" the mesh of the shaded
surface:

Page 8 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91015#msg_91015
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91015
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2718
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91021#msg_91021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91021
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $; Shaded surface
 POLYGONS = connectivity, SHADING=1, STYLE=2, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=0)
 normalsXYZ = Compute_Mesh_Normals(vertices, connectivity)
 vertices2 = vertices - normalsXYZ * 0.02 ; Magic number!
 oPolygon2 = OBJ_NEW('IDLgrPolygon', vertices2, $; Wireframe
 POLYGONS = connectivity, STYLE=1, $
 depth_offset=1)

That magic number happens to work well here. Try 0.01 (some bits of lines poke through the
front) and 0.1 (noticeable gap between wireframe and shaded surface) to reveal the mystery. Your
models may require a different value for good performance.

Also, see my "***" notes for a couple of other tips to allow you to keep windows on the screen for
easy comparison.

> Many thanks!
>
> Nuno

You're welcome!

-Dick

Dick Jackson Software Consulting Inc.
Victoria, BC, Canada --- http://www.d-jackson.com

;-----

PRO nuno_question_example_1_event, ev
 ; (not really needed for this example)
END

PRO nuno_question_example_1
 ; create a test object
 vertices = [[0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0], [0.5, 0.5, 1]]
 connectivity = [3, 0, 1, 4, $
 3, 1, 2, 4, $
 3, 2, 3, 4, $
 3, 3, 0, 4]
 vert_colors = [[0,0,0],[255,0,0],[0,255,0],[0,0,255],[255,255,255]]

 ; Initialize model for display (2 views).
 oModel1 = OBJ_NEW('IDLgrModel')
 oModel2 = OBJ_NEW('IDLgrModel')

Page 9 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; Initialize polygon and/or polyline
 option=3
 CASE option of

 1: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 2: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $
 POLYGONS = connectivity, SHADING=1, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=1)
 oPolyline = OBJ_NEW('IDLgrPolyline', vertices, $
 POLYLINES = connectivity, COLOR = [0, 0, 0])
 end

 3: begin
 oPolygon = OBJ_NEW('IDLgrPolygon', vertices, $; Shaded surface
 POLYGONS = connectivity, SHADING=1, STYLE=2, $
 vert_colors=vert_colors, bottom=[200,200,200], $
 depth_offset=0)
 normalsXYZ = Compute_Mesh_Normals(vertices, connectivity)
 vertices2 = vertices - normalsXYZ * 0.02 ; Magic number!
 oPolygon2 = OBJ_NEW('IDLgrPolygon', vertices2, $; Wireframe
 POLYGONS = connectivity, STYLE=1, $
 depth_offset=1)
 end
 endcase

 ; Add the polygon(s) and/or polyline to the model.
 oModel1 -> Add, oPolygon
 if option EQ 1 or option EQ 2 then oModel1 -> Add, oPolyline
 if option EQ 3 then oModel1 -> Add, oPolygon2
 oModel2.Add, oModel1, /alias ; create an alias for 2nd model

 ; used for display:
 ov1 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2.1)
 ov1.add, oModel1
 ov2 = idlgrview(viewplane_rect=[-2, -2, 4, 4], zclip=[2, -2], eye=2.1)
 ov2.add, oModel2

 ; create GUI
 s = 256

Page 10 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 base = widget_base(/row, Title='Option '+string(option))
 d1 = widget_draw(base, graphics_level=2, xsize=s, ysize=s, $
 tooltip="Front", retain=2) ;***
 d2 = widget_draw(base, graphics_level=2, xsize=s, ysize=s, $
 tooltip="Back", retain=2) ;***

 ; show GUI and model
 widget_control, base, /realize
 widget_control, d1, get_value=ow1
 widget_control, d2, get_value=ow2
 oModel1 -> Rotate, [1, 0, 0], 45 ; Rotate to better show the front side
 ow1.setproperty, graphics_tree=ov1
 ow1.draw
 oModel1 -> Rotate, [1, 0, 0], 180 ; Rotate again to show the back side
 ow2.setproperty, graphics_tree=ov2
 ow2.draw

 xmanager, 'nuno_question_example_1', base, /no_block ;***
END

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Nuno Ferreira on Thu, 28 May 2015 20:08:36 GMT
View Forum Message <> Reply to Message

Thanks Dick, it helped me a lot. Using Compute_Mesh_Normals() is a nice solution that worked
well (after some testing... it would also be great if we could use many offset values with the
DEPTH_OFFSET keyword, using the exact vertices positions, but apparently that is not the case).

I have managed to show the 3D point cloud as filled color polygons in the front side and filled grey
polygons in the back, with layers of points and/or lines in each side (front and back), using
different colors and transparency levels (I am using black for the back face and white for the front
face but it could be any color, of course). Here is a screenshot showing an example of the two
sides of the surface: https://drive.google.com/open?id=0B6Ti5FMqve-dMHBTXzJpSHQ1Q2
M&authuser=0 (I agree it is not the best test object... :)).

Here is the code I am using, in case it may help others. It probably has unnecessary statements
such as DOUBLE, DEPTH_TEST_DISABLE, etc that were added during the tests. I am using
slider widgets to set the transparency of each layer independently (via the "vis_alpha_*"
parameters below):

 offset_factor = 0.05 ; defines the distance between the
 ; different layers.

 ; layer 0: filled polygons (color in the front, grey in the back):
 p = idlgrpolygon(v, poly=c, vert_colors=vc, $

Page 11 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91055#msg_91055
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91055
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 style=vis_style, shading=vis_shading, $
 bottom=[200,200,200], depth_offset=0, /double)
 normalsXYZ = Compute_Mesh_Normals(v, c)

 ; layer +1: lines with the same colors as the filled polygons
 ; (the idea was to use this to help covering some points from
 ; the back that sometimes appear in the front face, when I zoom out.
 ; It didn't work - instead it is being used to give some color
 ; to the back face, if needed...)
 vc2 = vc
 vc2[3,*] = vis_alpha_color_lines*255
 v2 = v + normalsXYZ * offset_factor
 p2 = idlgrpolygon(v2, poly=c, vert_colors=vc2, $
 style=1, shading=vis_shading, depth_offset=0, $
 depth_test_function=4, depth_test_disable=2, /double)

 ; layer -1: lines in the back
 v3 = v - normalsXYZ * offset_factor
 p3 = OBJ_NEW('IDLgrPolygon', v3, POLYGONS=c, $
 STYLE=1, color=[0,0,0], depth_offset=1, $
 alpha=vis_alpha_lines_back, depth_test_function=2, $
 depth_test_disable=2, /double)

 ; layer -2: points in the back
 v4 = v - normalsXYZ * offset_factor * 2
 p4 = OBJ_NEW('IDLgrPolygon', v4, POLYGONS=c, STYLE=0, $
 color=[0,0,0], depth_offset=1, $
 alpha=vis_alpha_points_back, depth_test_function=2, $
 depth_test_disable=2, /double)

 ; layer +2: lines in the front
 v5 = v + normalsXYZ * offset_factor * 2
 p5 = OBJ_NEW('IDLgrPolygon', v5, POLYGONS=c, STYLE=1, $
 color=[255,255,255], depth_offset=0, $
 alpha=vis_alpha_lines_front, depth_test_function=2, $
 depth_test_disable=2, /double)

 ; layer +3: points in the front
 v6 = v + normalsXYZ * offset_factor * 3
 p6 = OBJ_NEW('IDLgrPolygon', v6, POLYGONS=c, STYLE=0, $
 color=[255,255,255], depth_offset=0, $
 alpha=vis_alpha_points_front, depth_test_function=2, $
 depth_test_disable=2, /double)

It is probably overkill, but it is nice to have full control of what we see...

Nuno

Page 12 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Nuno Ferreira on Fri, 29 May 2015 09:28:30 GMT
View Forum Message <> Reply to Message

> This is a very cool use of the visualization capabilities of IDL. Is there an ultimate goal or are
you just enjoying the fun of experimentation with new tools?

Yes, there is a goal. We are assessing the use of 3D sensing devices in medical imaging, namely
in image fusion and movement analysis/correction. We would like to use the 3D surface
information provided by these sensors as an aid to fuse patient data acquired in different
scanners. For instance, we would like to provide CT information to a PET-only scanner (CT and
PET stand for Computed Tomography and Positron Emission Tomography respectively; most
PET scanners nowadays also have CT, but some prototypes and old cameras only have PET).
Another possibility is to measure and correct patient movement that may occur during studies
performed in PET/CT scanners (since CT and PET data are not acquired simultaneously, some
mis-registration of the two types of information may occur if there is movement). There are also
other potential applications, such as using the Kinect to help positioning the patient in the scanner
if the camera does not have a patient positioning system.

> Thanks for the screen shots!

You're welcome.

> (As of Friday morning I no longer work for Exelis - I now work for Harris.)

Best luck on your new job!

Nuno

Subject: Re: 3D point cloud visualization: filled polygons in the front, different fill
colour + lines in the back
Posted by Jim Pendleton on Fri, 29 May 2015 13:06:21 GMT
View Forum Message <> Reply to Message

On Friday, May 29, 2015 at 3:28:33 AM UTC-6, Nuno Ferreira wrote:
>> This is a very cool use of the visualization capabilities of IDL. Is there an ultimate goal or are
you just enjoying the fun of experimentation with new tools?
>
> Yes, there is a goal. We are assessing the use of 3D sensing devices in medical imaging,
namely in image fusion and movement analysis/correction. We would like to use the 3D surface
information provided by these sensors as an aid to fuse patient data acquired in different
scanners. For instance, we would like to provide CT information to a PET-only scanner (CT and
PET stand for Computed Tomography and Positron Emission Tomography respectively; most
PET scanners nowadays also have CT, but some prototypes and old cameras only have PET).

Page 13 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4746
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91056#msg_91056
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91056
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7446
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=36968&goto=91061#msg_91061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=91061
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Another possibility is to measure and correct patient movement that may occur during studies
performed in PET/CT scanners (since CT and PET data are not acquired simultaneously, some
mis-registration of the two types of information may occur if there is movement). There are also
other potential applications, such as using the Kinect to help positioning the patient in the scanner
if the camera does not have a patient positioning system.
>
>
>> Thanks for the screen shots!
>
> You're welcome.
>
>
>> (As of Friday morning I no longer work for Exelis - I now work for Harris.)
>
> Best luck on your new job!
>
> Nuno

This sounds like a very interesting project.

My job is (should be?) the same. We simply have new ownership!

Jim P
"I work for Harris"

Jim P.

Page 14 of 14 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

