
Subject: Slow object graphics when plotting multiple lines
Posted by steven.abel on Fri, 01 Apr 2016 12:51:47 GMT
View Forum Message <> Reply to Message

I am new to object graphics and struggling to speed up a simple plot that contains multiple lines. 

Here is an example that plots 200 lines - the object graphics version is very slow compared to the
direct graphics version. 

;create some dummy data
x = replicate(0.,11,200)
y = x
FOR i=0,199 DO x[*,i] = FINDGEN(11)
FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)

;plot in direct graphics
plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
FOR i=0,199 DO oplot,x[*,i],y[*,i]

;plot in object graphics
w = window()
w.REFRESH, /DISABLE
p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
w.REFRESH

Is there any way to speed this up in object graphics?

Thanks

Steve

Subject: Re: Slow object graphics when plotting multiple lines
Posted by greg.addr on Mon, 04 Apr 2016 08:56:31 GMT
View Forum Message <> Reply to Message

On Friday, April 1, 2016 at 2:51:49 PM UTC+2, steve...@metoffice.gov.uk wrote:
>  I am new to object graphics and struggling to speed up a simple plot that contains multiple
lines. 
>  
>  Here is an example that plots 200 lines - the object graphics version is very slow compared to
the direct graphics version. 
>  
>  ;create some dummy data
>  x = replicate(0.,11,200)
>  y = x

Page 1 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92954#msg_92954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92954
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6101
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92962#msg_92962
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92962
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  FOR i=0,199 DO x[*,i] = FINDGEN(11)
>  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>  
>  ;plot in direct graphics
>  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>  FOR i=0,199 DO oplot,x[*,i],y[*,i]
>  
>  ;plot in object graphics
>  w = window()
>  w.REFRESH, /DISABLE
>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>  w.REFRESH
>  
>  
>  Is there any way to speed this up in object graphics?
>  
>  Thanks
>  
>  Steve

You probably mean 'function graphics' - 'object graphics' is a different system. I think the extra
time is the price you pay for being able to resize, zoom, rotate etc with your results.

I've been using a home-baked system for anti-aliasing direct graphics since before FG. It comes
out intermediate between DG and FG:

pro test1
  ;create some dummy data  
  x = replicate(0.,11,200)
  y = x
  FOR i=0,199 DO x[*,i] = FINDGEN(11)
  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
  
  ;plot in direct graphics
  tic
  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
  FOR i=0,199 DO oplot,x[*,i],y[*,i]
  toc
  
  ;plot in object graphics
  tic
  w = window()
  w.REFRESH, /DISABLE
  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
  w.REFRESH
  toc

Page 2 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


  
  ;plot in gmwindow
  tic
  gmw=obj_new("gmwindow")
  gmw->plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
  FOR i=0,199 DO gmw->oplot,x[*,i],y[*,i],/no_draw
  gmw->draw
  toc
  
end

IDL> test1
% Time elapsed: 0.094000101 seconds.
% Time elapsed: 3.6379998 seconds.
% Time elapsed: 0.68700004 seconds.

Output of all three are here:  http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/dire
ct_vs_function_vs_gmwindow.png

And the gmwindow code, here: http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/

cheers,
Greg

Subject: Re: Slow object graphics when plotting multiple lines
Posted by steven.abel on Mon, 04 Apr 2016 10:49:30 GMT
View Forum Message <> Reply to Message

On Monday, 4 April 2016 09:56:34 UTC+1, greg...@googlemail.com  wrote:
>  On Friday, April 1, 2016 at 2:51:49 PM UTC+2, steve...@metoffice.gov.uk wrote:
>>  I am new to object graphics and struggling to speed up a simple plot that contains multiple
lines. 
>>  
>>  Here is an example that plots 200 lines - the object graphics version is very slow compared to
the direct graphics version. 
>>  
>>  ;create some dummy data
>>  x = replicate(0.,11,200)
>>  y = x
>>  FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>  
>>  ;plot in direct graphics
>>  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>  FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>  
>>  ;plot in object graphics

Page 3 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92963#msg_92963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92963
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>  w = window()
>>  w.REFRESH, /DISABLE
>>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>  w.REFRESH
>>  
>>  
>>  Is there any way to speed this up in object graphics?
>>  
>>  Thanks
>>  
>>  Steve
>  
>  You probably mean 'function graphics' - 'object graphics' is a different system. I think the extra
time is the price you pay for being able to resize, zoom, rotate etc with your results.
>  
>  I've been using a home-baked system for anti-aliasing direct graphics since before FG. It
comes out intermediate between DG and FG:
>  
>  pro test1
>    ;create some dummy data  
>    x = replicate(0.,11,200)
>    y = x
>    FOR i=0,199 DO x[*,i] = FINDGEN(11)
>    FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>    
>    ;plot in direct graphics
>    tic
>    plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>    FOR i=0,199 DO oplot,x[*,i],y[*,i]
>    toc
>    
>    ;plot in object graphics
>    tic
>    w = window()
>    w.REFRESH, /DISABLE
>    p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>    FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>    w.REFRESH
>    toc
>    
>    ;plot in gmwindow
>    tic
>    gmw=obj_new("gmwindow")
>    gmw->plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>    FOR i=0,199 DO gmw->oplot,x[*,i],y[*,i],/no_draw
>    gmw->draw
>    toc

Page 4 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>    
>  end
>  
>  IDL> test1
>  % Time elapsed: 0.094000101 seconds.
>  % Time elapsed: 3.6379998 seconds.
>  % Time elapsed: 0.68700004 seconds.
>  
>  Output of all three are here:  http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/dire
ct_vs_function_vs_gmwindow.png
>  
>  And the gmwindow code, here: http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/
>  
>  cheers,
>  Greg

Thanks Greg

Yes I did mean function graphics!

The actual plot I am doing has six figures in the same window (each panel contains about 200
lines) and it takes several minutes to render this using function graphics on my Linux machine.
Looks like for this plot at least I will have to revert to direct graphics.

Cheers

Steve

Subject: Re: Slow object graphics when plotting multiple lines
Posted by lecacheux.alain on Mon, 04 Apr 2016 11:12:19 GMT
View Forum Message <> Reply to Message

Le lundi 4 avril 2016 12:49:33 UTC+2, steve...@metoffice.gov.uk a écrit :
>  On Monday, 4 April 2016 09:56:34 UTC+1, greg...@googlemail.com  wrote:
>>  On Friday, April 1, 2016 at 2:51:49 PM UTC+2, steve...@metoffice.gov.uk wrote:
>>>  I am new to object graphics and struggling to speed up a simple plot that contains multiple
lines. 
>>>  
>>>  Here is an example that plots 200 lines - the object graphics version is very slow compared
to the direct graphics version. 
>>>  
>>>  ;create some dummy data
>>>  x = replicate(0.,11,200)
>>>  y = x
>>>  FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>  

Page 5 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92964#msg_92964
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92964
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>  ;plot in direct graphics
>>>  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>  FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>  
>>>  ;plot in object graphics
>>>  w = window()
>>>  w.REFRESH, /DISABLE
>>>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>  w.REFRESH
>>>  
>>>  
>>>  Is there any way to speed this up in object graphics?
>>>  
>>>  Thanks
>>>  
>>>  Steve
>>  
>>  You probably mean 'function graphics' - 'object graphics' is a different system. I think the extra
time is the price you pay for being able to resize, zoom, rotate etc with your results.
>>  
>>  I've been using a home-baked system for anti-aliasing direct graphics since before FG. It
comes out intermediate between DG and FG:
>>  
>>  pro test1
>>    ;create some dummy data  
>>    x = replicate(0.,11,200)
>>    y = x
>>    FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>    FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>    
>>    ;plot in direct graphics
>>    tic
>>    plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>    FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>    toc
>>    
>>    ;plot in object graphics
>>    tic
>>    w = window()
>>    w.REFRESH, /DISABLE
>>    p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>    FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>    w.REFRESH
>>    toc
>>    
>>    ;plot in gmwindow
>>    tic

Page 6 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>    gmw=obj_new("gmwindow")
>>    gmw->plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>    FOR i=0,199 DO gmw->oplot,x[*,i],y[*,i],/no_draw
>>    gmw->draw
>>    toc
>>    
>>  end
>>  
>>  IDL> test1
>>  % Time elapsed: 0.094000101 seconds.
>>  % Time elapsed: 3.6379998 seconds.
>>  % Time elapsed: 0.68700004 seconds.
>>  
>>  Output of all three are here:  http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/dire
ct_vs_function_vs_gmwindow.png
>>  
>>  And the gmwindow code, here: http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/
>>  
>>  cheers,
>>  Greg
>  
>  Thanks Greg
>  
>  Yes I did mean function graphics!
>  
>  The actual plot I am doing has six figures in the same window (each panel contains about 200
lines) and it takes several minutes to render this using function graphics on my Linux machine.
Looks like for this plot at least I will have to revert to direct graphics.
>  
>  Cheers
>  
>  Steve

The function PLOT(/OVERPLOT) does not work like the old OPLOT procedure: for each added
new curve, the full environment of the already plotted graphics is recomputed and displayed (axis
boundaries, etc...). 
In your case, you might (should) instead use the POLYLINE or POLYGON functions whose speed
is amazing.
alx.

Subject: Re: Slow object graphics when plotting multiple lines
Posted by steven.abel on Mon, 04 Apr 2016 11:39:38 GMT
View Forum Message <> Reply to Message

On Monday, 4 April 2016 12:12:21 UTC+1, alx  wrote:
>  Le lundi 4 avril 2016 12:49:33 UTC+2, steve...@metoffice.gov.uk a écrit :
>>  On Monday, 4 April 2016 09:56:34 UTC+1, greg...@googlemail.com  wrote:

Page 7 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92965#msg_92965
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92965
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>  On Friday, April 1, 2016 at 2:51:49 PM UTC+2, steve...@metoffice.gov.uk wrote:
>>>>  I am new to object graphics and struggling to speed up a simple plot that contains multiple
lines. 
>>>>  
>>>>  Here is an example that plots 200 lines - the object graphics version is very slow compared
to the direct graphics version. 
>>>>  
>>>>  ;create some dummy data
>>>>  x = replicate(0.,11,200)
>>>>  y = x
>>>>  FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>>  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>>  
>>>>  ;plot in direct graphics
>>>>  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>>  
>>>>  ;plot in object graphics
>>>>  w = window()
>>>>  w.REFRESH, /DISABLE
>>>>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>>  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>>  w.REFRESH
>>>>  
>>>>  
>>>>  Is there any way to speed this up in object graphics?
>>>>  
>>>>  Thanks
>>>>  
>>>>  Steve
>>>  
>>>  You probably mean 'function graphics' - 'object graphics' is a different system. I think the
extra time is the price you pay for being able to resize, zoom, rotate etc with your results.
>>>  
>>>  I've been using a home-baked system for anti-aliasing direct graphics since before FG. It
comes out intermediate between DG and FG:
>>>  
>>>  pro test1
>>>    ;create some dummy data  
>>>    x = replicate(0.,11,200)
>>>    y = x
>>>    FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>    FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>    
>>>    ;plot in direct graphics
>>>    tic
>>>    plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>    FOR i=0,199 DO oplot,x[*,i],y[*,i]

Page 8 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>    toc
>>>    
>>>    ;plot in object graphics
>>>    tic
>>>    w = window()
>>>    w.REFRESH, /DISABLE
>>>    p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>    FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>    w.REFRESH
>>>    toc
>>>    
>>>    ;plot in gmwindow
>>>    tic
>>>    gmw=obj_new("gmwindow")
>>>    gmw->plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>    FOR i=0,199 DO gmw->oplot,x[*,i],y[*,i],/no_draw
>>>    gmw->draw
>>>    toc
>>>    
>>>  end
>>>  
>>>  IDL> test1
>>>  % Time elapsed: 0.094000101 seconds.
>>>  % Time elapsed: 3.6379998 seconds.
>>>  % Time elapsed: 0.68700004 seconds.
>>>  
>>>  Output of all three are here:  http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/dire
ct_vs_function_vs_gmwindow.png
>>>  
>>>  And the gmwindow code, here: http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/
>>>  
>>>  cheers,
>>>  Greg
>>  
>>  Thanks Greg
>>  
>>  Yes I did mean function graphics!
>>  
>>  The actual plot I am doing has six figures in the same window (each panel contains about 200
lines) and it takes several minutes to render this using function graphics on my Linux machine.
Looks like for this plot at least I will have to revert to direct graphics.
>>  
>>  Cheers
>>  
>>  Steve
>  
>  The function PLOT(/OVERPLOT) does not work like the old OPLOT procedure: for each added
new curve, the full environment of the already plotted graphics is recomputed and displayed (axis

Page 9 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


boundaries, etc...). 
>  In your case, you might (should) instead use the POLYLINE or POLYGON functions whose
speed is amazing.
>  alx.

Thanks for pointing me to polyline - that speeds up my test case by about a factor of 4 (still a lot
slower than direct graphics)

PRO test 

IRESOLVE

;create some dummy data
x = replicate(0.,11,200)
y = x
FOR i=0,199 DO x[*,i] = FINDGEN(11)
FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)

;plot in direct graphics
st=SYSTIME(/SECONDS)
plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
FOR i=0,199 DO oplot,x[*,i],y[*,i]
PRINT,SYSTIME(/SECONDS)-st

;plot in function graphics 1
st=SYSTIME(/SECONDS)
w = window()
w.REFRESH, /DISABLE
p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
w.REFRESH
PRINT,SYSTIME(/SECONDS)-st

;plot in function graphics 2
st=SYSTIME(/SECONDS)
w = window()
w.REFRESH, /DISABLE
p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
FOR i=0,199 DO !NULL=polyline(x[*,i],y[*,i],/data)
w.REFRESH
PRINT,SYSTIME(/SECONDS)-st

END

Time taken for these 3 plots

Page 10 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


IDL> print,!version
{ x86_64 linux unix linux 8.2 Apr 10 2012      64      64}
IDL> test
% Compiled module: $MAIN$.
    0.0013258457
       18.797473
       4.7191000

Subject: Re: Slow object graphics when plotting multiple lines
Posted by lecacheux.alain on Mon, 04 Apr 2016 12:19:22 GMT
View Forum Message <> Reply to Message

Le lundi 4 avril 2016 13:39:41 UTC+2, steve...@metoffice.gov.uk a écrit :
>  On Monday, 4 April 2016 12:12:21 UTC+1, alx  wrote:
>>  Le lundi 4 avril 2016 12:49:33 UTC+2, steve...@metoffice.gov.uk a écrit :
>>>  On Monday, 4 April 2016 09:56:34 UTC+1, greg...@googlemail.com  wrote:
>>>>  On Friday, April 1, 2016 at 2:51:49 PM UTC+2, steve...@metoffice.gov.uk wrote:
>>>>  > I am new to object graphics and struggling to speed up a simple plot that contains
multiple lines. 
>>>>  > 
>>>>  > Here is an example that plots 200 lines - the object graphics version is very slow
compared to the direct graphics version. 
>>>>  > 
>>>>  > ;create some dummy data
>>>>  > x = replicate(0.,11,200)
>>>>  > y = x
>>>>  > FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>>  > FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>>  > 
>>>>  > ;plot in direct graphics
>>>>  > plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  > FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>>  > 
>>>>  > ;plot in object graphics
>>>>  > w = window()
>>>>  > w.REFRESH, /DISABLE
>>>>  > p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>>  > FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>>  > w.REFRESH
>>>>  > 
>>>>  > 
>>>>  > Is there any way to speed this up in object graphics?
>>>>  > 
>>>>  > Thanks
>>>>  > 
>>>>  > Steve
>>>>  

Page 11 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92966#msg_92966
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92966
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>>  You probably mean 'function graphics' - 'object graphics' is a different system. I think the
extra time is the price you pay for being able to resize, zoom, rotate etc with your results.
>>>>  
>>>>  I've been using a home-baked system for anti-aliasing direct graphics since before FG. It
comes out intermediate between DG and FG:
>>>>  
>>>>  pro test1
>>>>    ;create some dummy data  
>>>>    x = replicate(0.,11,200)
>>>>    y = x
>>>>    FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>>    FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>>    
>>>>    ;plot in direct graphics
>>>>    tic
>>>>    plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>    FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>>    toc
>>>>    
>>>>    ;plot in object graphics
>>>>    tic
>>>>    w = window()
>>>>    w.REFRESH, /DISABLE
>>>>    p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>>    FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>>    w.REFRESH
>>>>    toc
>>>>    
>>>>    ;plot in gmwindow
>>>>    tic
>>>>    gmw=obj_new("gmwindow")
>>>>    gmw->plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>    FOR i=0,199 DO gmw->oplot,x[*,i],y[*,i],/no_draw
>>>>    gmw->draw
>>>>    toc
>>>>    
>>>>  end
>>>>  
>>>>  IDL> test1
>>>>  % Time elapsed: 0.094000101 seconds.
>>>>  % Time elapsed: 3.6379998 seconds.
>>>>  % Time elapsed: 0.68700004 seconds.
>>>>  
>>>>  Output of all three are here:  http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/dire
ct_vs_function_vs_gmwindow.png
>>>>  
>>>>  And the gmwindow code, here: http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/
>>>>  

Page 12 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>>  cheers,
>>>>  Greg
>>>  
>>>  Thanks Greg
>>>  
>>>  Yes I did mean function graphics!
>>>  
>>>  The actual plot I am doing has six figures in the same window (each panel contains about
200 lines) and it takes several minutes to render this using function graphics on my Linux
machine. Looks like for this plot at least I will have to revert to direct graphics.
>>>  
>>>  Cheers
>>>  
>>>  Steve
>>  
>>  The function PLOT(/OVERPLOT) does not work like the old OPLOT procedure: for each
added new curve, the full environment of the already plotted graphics is recomputed and
displayed (axis boundaries, etc...). 
>>  In your case, you might (should) instead use the POLYLINE or POLYGON functions whose
speed is amazing.
>>  alx.
>  
>  Thanks for pointing me to polyline - that speeds up my test case by about a factor of 4 (still a lot
slower than direct graphics)
>  
>  
>  PRO test 
>  
>  IRESOLVE
>  
>  ;create some dummy data
>  x = replicate(0.,11,200)
>  y = x
>  FOR i=0,199 DO x[*,i] = FINDGEN(11)
>  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>  
>  
>  ;plot in direct graphics
>  st=SYSTIME(/SECONDS)
>  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>  FOR i=0,199 DO oplot,x[*,i],y[*,i]
>  PRINT,SYSTIME(/SECONDS)-st
>  
>  ;plot in function graphics 1
>  st=SYSTIME(/SECONDS)
>  w = window()
>  w.REFRESH, /DISABLE
>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)

Page 13 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>  w.REFRESH
>  PRINT,SYSTIME(/SECONDS)-st
>  
>  ;plot in function graphics 2
>  st=SYSTIME(/SECONDS)
>  w = window()
>  w.REFRESH, /DISABLE
>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>  FOR i=0,199 DO !NULL=polyline(x[*,i],y[*,i],/data)
>  w.REFRESH
>  PRINT,SYSTIME(/SECONDS)-st
>  
>  END
>  
>  Time taken for these 3 plots
>  
>  IDL> print,!version
>  { x86_64 linux unix linux 8.2 Apr 10 2012      64      64}
>  IDL> test
>  % Compiled module: $MAIN$.
>      0.0013258457
>         18.797473
>         4.7191000

You might call POLYLINE only once by using the CONNECTIVITY keyword (i.e. by building a
single *poly*line from your 200 initial lines). This should make everything even faster.
alx.

Subject: Re: Slow object graphics when plotting multiple lines
Posted by steven.abel on Mon, 04 Apr 2016 14:20:48 GMT
View Forum Message <> Reply to Message

On Monday, 4 April 2016 13:19:23 UTC+1, alx  wrote:
>  Le lundi 4 avril 2016 13:39:41 UTC+2, steve...@metoffice.gov.uk a écrit :
>>  On Monday, 4 April 2016 12:12:21 UTC+1, alx  wrote:
>>>  Le lundi 4 avril 2016 12:49:33 UTC+2, steve...@metoffice.gov.uk a écrit :
>>>>  On Monday, 4 April 2016 09:56:34 UTC+1, greg...@googlemail.com  wrote:
>>>>  > On Friday, April 1, 2016 at 2:51:49 PM UTC+2, steve...@metoffice.gov.uk wrote:
>>>>  > > I am new to object graphics and struggling to speed up a simple plot that contains
multiple lines. 
>>>>  > > 
>>>>  > > Here is an example that plots 200 lines - the object graphics version is very slow
compared to the direct graphics version. 
>>>>  > > 
>>>>  > > ;create some dummy data
>>>>  > > x = replicate(0.,11,200)

Page 14 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92967#msg_92967
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92967
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>>  > > y = x
>>>>  > > FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>>  > > FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>>  > > 
>>>>  > > ;plot in direct graphics
>>>>  > > plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  > > FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>>  > > 
>>>>  > > ;plot in object graphics
>>>>  > > w = window()
>>>>  > > w.REFRESH, /DISABLE
>>>>  > > p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>>  > > FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>>  > > w.REFRESH
>>>>  > > 
>>>>  > > 
>>>>  > > Is there any way to speed this up in object graphics?
>>>>  > > 
>>>>  > > Thanks
>>>>  > > 
>>>>  > > Steve
>>>>  > 
>>>>  > You probably mean 'function graphics' - 'object graphics' is a different system. I think the
extra time is the price you pay for being able to resize, zoom, rotate etc with your results.
>>>>  > 
>>>>  > I've been using a home-baked system for anti-aliasing direct graphics since before FG. It
comes out intermediate between DG and FG:
>>>>  > 
>>>>  > pro test1
>>>>  >   ;create some dummy data  
>>>>  >   x = replicate(0.,11,200)
>>>>  >   y = x
>>>>  >   FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>>  >   FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>>  >   
>>>>  >   ;plot in direct graphics
>>>>  >   tic
>>>>  >   plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  >   FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>>  >   toc
>>>>  >   
>>>>  >   ;plot in object graphics
>>>>  >   tic
>>>>  >   w = window()
>>>>  >   w.REFRESH, /DISABLE
>>>>  >   p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>>  >   FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>>  >   w.REFRESH

Page 15 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>>  >   toc
>>>>  >   
>>>>  >   ;plot in gmwindow
>>>>  >   tic
>>>>  >   gmw=obj_new("gmwindow")
>>>>  >   gmw->plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  >   FOR i=0,199 DO gmw->oplot,x[*,i],y[*,i],/no_draw
>>>>  >   gmw->draw
>>>>  >   toc
>>>>  >   
>>>>  > end
>>>>  > 
>>>>  > IDL> test1
>>>>  > % Time elapsed: 0.094000101 seconds.
>>>>  > % Time elapsed: 3.6379998 seconds.
>>>>  > % Time elapsed: 0.68700004 seconds.
>>>>  > 
>>>>  > Output of all three are here:  http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/dire
ct_vs_function_vs_gmwindow.png
>>>>  > 
>>>>  > And the gmwindow code, here: http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/
>>>>  > 
>>>>  > cheers,
>>>>  > Greg
>>>>  
>>>>  Thanks Greg
>>>>  
>>>>  Yes I did mean function graphics!
>>>>  
>>>>  The actual plot I am doing has six figures in the same window (each panel contains about
200 lines) and it takes several minutes to render this using function graphics on my Linux
machine. Looks like for this plot at least I will have to revert to direct graphics.
>>>>  
>>>>  Cheers
>>>>  
>>>>  Steve
>>>  
>>>  The function PLOT(/OVERPLOT) does not work like the old OPLOT procedure: for each
added new curve, the full environment of the already plotted graphics is recomputed and
displayed (axis boundaries, etc...). 
>>>  In your case, you might (should) instead use the POLYLINE or POLYGON functions whose
speed is amazing.
>>>  alx.
>>  
>>  Thanks for pointing me to polyline - that speeds up my test case by about a factor of 4 (still a
lot slower than direct graphics)
>>  
>>  

Page 16 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>  PRO test 
>>  
>>  IRESOLVE
>>  
>>  ;create some dummy data
>>  x = replicate(0.,11,200)
>>  y = x
>>  FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>  
>>  
>>  ;plot in direct graphics
>>  st=SYSTIME(/SECONDS)
>>  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>  FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>  PRINT,SYSTIME(/SECONDS)-st
>>  
>>  ;plot in function graphics 1
>>  st=SYSTIME(/SECONDS)
>>  w = window()
>>  w.REFRESH, /DISABLE
>>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>  w.REFRESH
>>  PRINT,SYSTIME(/SECONDS)-st
>>  
>>  ;plot in function graphics 2
>>  st=SYSTIME(/SECONDS)
>>  w = window()
>>  w.REFRESH, /DISABLE
>>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>  FOR i=0,199 DO !NULL=polyline(x[*,i],y[*,i],/data)
>>  w.REFRESH
>>  PRINT,SYSTIME(/SECONDS)-st
>>  
>>  END
>>  
>>  Time taken for these 3 plots
>>  
>>  IDL> print,!version
>>  { x86_64 linux unix linux 8.2 Apr 10 2012      64      64}
>>  IDL> test
>>  % Compiled module: $MAIN$.
>>      0.0013258457
>>         18.797473
>>         4.7191000
>  
>  You might call POLYLINE only once by using the CONNECTIVITY keyword (i.e. by building a

Page 17 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


single *poly*line from your 200 initial lines). This should make everything even faster.
>  alx.

Thanks for pointing me to that - took me a little while for me to understand the IDL documentation!

Using the connectivity keyword as below speeded it up significantly, with the test plot taking only
0.38 seconds on my machine. A big improvement on my initial implementation in function
graphics!

xx=REFORM(x,n_elements(x))
yy=REFORM(y,n_elements(y))
conn = LONARR(n_elements(xx)+200)
FOR i = 0, 2400-1, 12 DO conn[i]=11
FOR i = 1, 2400-1, 12 DO conn[i:i+10]=LINDGEN(11)+i-FLOOR(i/12.)-1
;plot in function graphics 3
w = window()
w.REFRESH, /DISABLE
p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
!NULL=polyline(xx,yy,connectivity=conn,/data,target=p)
w.REFRESH

Cheers

Ste

Subject: Re: Slow object graphics when plotting multiple lines
Posted by Yngvar Larsen on Mon, 04 Apr 2016 14:48:09 GMT
View Forum Message <> Reply to Message

Another trick, using a single array with lines separated by NaN. This works both in direct and
function graphics.  With these two added, plus the new CONNECTIVITY trick, your TEST routine
prints this on my machine (2012 iMac)

;; your original routines
    0.0013830662
       3.0384021
       2.2408111
;; new routines
      0.26107001 ; Function graphics, NaN
   0.0011150837 ; Direct graphics, NaN (scales much better than looping over PLOT, ...)
;; The CONNECTIVITY trick:
      0.26308203

For 2000 lines, skipping your first two function graphics attempts that use minutes...
     0.040501118 ; loop, direct graphics
      0.28132486 ; NaN, function graphics

Page 18 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92968#msg_92968
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92968
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


     0.011729956 ; NaN, direct graphics
      0.32190108 ; CONNECTIVITY, function graphics
For 20000 lines:
       1.6218228
      0.39294910
      0.10883307
      0.37250996
For 200000 lines:
       17.753630
       1.3837330
       1.0937860
       1.3553588

Direct graphics with NaN is the winner, but function graphics is not far behind. Basically, it seems
the difference is constant, likely this is mostly the overhead of creating the graphics window.

;;;; NEW CODE BELOW HERE ;;;;;;;;
;plot in function graphics 3
st=SYSTIME(/SECONDS)
xx = [x, replicate(!values.f_nan, 1,200)]
yy = [y, replicate(!values.f_nan, 1,200)]
w = window() 
w.REFRESH, /DISABLE 
p = plot(xx, yy, /current)
w.REFRESH 
PRINT,SYSTIME(/SECONDS)-st 

;plot in direct graphics 
st=SYSTIME(/SECONDS) 
plot,xx,yy,/nodata,yrange=[-5,5],ystyle=1, /xstyle
PRINT,SYSTIME(/SECONDS)-st 

On Monday, 4 April 2016 16:20:51 UTC+2, steve...@metoffice.gov.uk  wrote:
>  On Monday, 4 April 2016 13:19:23 UTC+1, alx  wrote:
>>  Le lundi 4 avril 2016 13:39:41 UTC+2, steve...@metoffice.gov.uk a écrit :
>>>  On Monday, 4 April 2016 12:12:21 UTC+1, alx  wrote:
>>>>  Le lundi 4 avril 2016 12:49:33 UTC+2, steve...@metoffice.gov.uk a écrit :
>>>>  > On Monday, 4 April 2016 09:56:34 UTC+1, greg...@googlemail.com  wrote:
>>>>  > > On Friday, April 1, 2016 at 2:51:49 PM UTC+2, steve...@metoffice.gov.uk wrote:
>>>>  > > > I am new to object graphics and struggling to speed up a simple plot that contains
multiple lines. 
>>>>  > > > 
>>>>  > > > Here is an example that plots 200 lines - the object graphics version is very slow
compared to the direct graphics version. 
>>>>  > > > 
>>>>  > > > ;create some dummy data
>>>>  > > > x = replicate(0.,11,200)

Page 19 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>>  > > > y = x
>>>>  > > > FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>>  > > > FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>>  > > > 
>>>>  > > > ;plot in direct graphics
>>>>  > > > plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  > > > FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>>  > > > 
>>>>  > > > ;plot in object graphics
>>>>  > > > w = window()
>>>>  > > > w.REFRESH, /DISABLE
>>>>  > > > p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>>  > > > FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>>  > > > w.REFRESH
>>>>  > > > 
>>>>  > > > 
>>>>  > > > Is there any way to speed this up in object graphics?
>>>>  > > > 
>>>>  > > > Thanks
>>>>  > > > 
>>>>  > > > Steve
>>>>  > > 
>>>>  > > You probably mean 'function graphics' - 'object graphics' is a different system. I think
the extra time is the price you pay for being able to resize, zoom, rotate etc with your results.
>>>>  > > 
>>>>  > > I've been using a home-baked system for anti-aliasing direct graphics since before FG.
It comes out intermediate between DG and FG:
>>>>  > > 
>>>>  > > pro test1
>>>>  > >   ;create some dummy data  
>>>>  > >   x = replicate(0.,11,200)
>>>>  > >   y = x
>>>>  > >   FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>>  > >   FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>>  > >   
>>>>  > >   ;plot in direct graphics
>>>>  > >   tic
>>>>  > >   plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  > >   FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>>  > >   toc
>>>>  > >   
>>>>  > >   ;plot in object graphics
>>>>  > >   tic
>>>>  > >   w = window()
>>>>  > >   w.REFRESH, /DISABLE
>>>>  > >   p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>>  > >   FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>>  > >   w.REFRESH

Page 20 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>>  > >   toc
>>>>  > >   
>>>>  > >   ;plot in gmwindow
>>>>  > >   tic
>>>>  > >   gmw=obj_new("gmwindow")
>>>>  > >   gmw->plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>>  > >   FOR i=0,199 DO gmw->oplot,x[*,i],y[*,i],/no_draw
>>>>  > >   gmw->draw
>>>>  > >   toc
>>>>  > >   
>>>>  > > end
>>>>  > > 
>>>>  > > IDL> test1
>>>>  > > % Time elapsed: 0.094000101 seconds.
>>>>  > > % Time elapsed: 3.6379998 seconds.
>>>>  > > % Time elapsed: 0.68700004 seconds.
>>>>  > > 
>>>>  > > Output of all three are here: 
http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/dire ct_vs_function_vs_gmwindow.png
>>>>  > > 
>>>>  > > And the gmwindow code, here:
http://hrscview.fu-berlin.de/mex4/software/idl/gmwindow/
>>>>  > > 
>>>>  > > cheers,
>>>>  > > Greg
>>>>  > 
>>>>  > Thanks Greg
>>>>  > 
>>>>  > Yes I did mean function graphics!
>>>>  > 
>>>>  > The actual plot I am doing has six figures in the same window (each panel contains about
200 lines) and it takes several minutes to render this using function graphics on my Linux
machine. Looks like for this plot at least I will have to revert to direct graphics.
>>>>  > 
>>>>  > Cheers
>>>>  > 
>>>>  > Steve
>>>>  
>>>>  The function PLOT(/OVERPLOT) does not work like the old OPLOT procedure: for each
added new curve, the full environment of the already plotted graphics is recomputed and
displayed (axis boundaries, etc...). 
>>>>  In your case, you might (should) instead use the POLYLINE or POLYGON functions whose
speed is amazing.
>>>>  alx.
>>>  
>>>  Thanks for pointing me to polyline - that speeds up my test case by about a factor of 4 (still a
lot slower than direct graphics)
>>>  

Page 21 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>>  
>>>  PRO test 
>>>  
>>>  IRESOLVE
>>>  
>>>  ;create some dummy data
>>>  x = replicate(0.,11,200)
>>>  y = x
>>>  FOR i=0,199 DO x[*,i] = FINDGEN(11)
>>>  FOR i=0,199 DO y[*,i] = RANDOMN(seed,11)
>>>  
>>>  
>>>  ;plot in direct graphics
>>>  st=SYSTIME(/SECONDS)
>>>  plot,[0,10],[-5,5],/nodata,yrange=[-5,5],ystyle=1
>>>  FOR i=0,199 DO oplot,x[*,i],y[*,i]
>>>  PRINT,SYSTIME(/SECONDS)-st
>>>  
>>>  ;plot in function graphics 1
>>>  st=SYSTIME(/SECONDS)
>>>  w = window()
>>>  w.REFRESH, /DISABLE
>>>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>  FOR i=0,199 DO !NULL=plot(x[*,i],y[*,i],/overplot)
>>>  w.REFRESH
>>>  PRINT,SYSTIME(/SECONDS)-st
>>>  
>>>  ;plot in function graphics 2
>>>  st=SYSTIME(/SECONDS)
>>>  w = window()
>>>  w.REFRESH, /DISABLE
>>>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>>>  FOR i=0,199 DO !NULL=polyline(x[*,i],y[*,i],/data)
>>>  w.REFRESH
>>>  PRINT,SYSTIME(/SECONDS)-st
>>>  
>>>  END
>>>  
>>>  Time taken for these 3 plots
>>>  
>>>  IDL> print,!version
>>>  { x86_64 linux unix linux 8.2 Apr 10 2012      64      64}
>>>  IDL> test
>>>  % Compiled module: $MAIN$.
>>>      0.0013258457
>>>         18.797473
>>>         4.7191000
>>  

Page 22 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>>  You might call POLYLINE only once by using the CONNECTIVITY keyword (i.e. by building a
single *poly*line from your 200 initial lines). This should make everything even faster.
>>  alx.
>  
>  Thanks for pointing me to that - took me a little while for me to understand the IDL
documentation!
>  
>  Using the connectivity keyword as below speeded it up significantly, with the test plot taking
only 0.38 seconds on my machine. A big improvement on my initial implementation in function
graphics!
>  
>  xx=REFORM(x,n_elements(x))
>  yy=REFORM(y,n_elements(y))
>  conn = LONARR(n_elements(xx)+200)
>  FOR i = 0, 2400-1, 12 DO conn[i]=11
>  FOR i = 1, 2400-1, 12 DO conn[i:i+10]=LINDGEN(11)+i-FLOOR(i/12.)-1
>  ;plot in function graphics 3
>  w = window()
>  w.REFRESH, /DISABLE
>  p = plot([0,10],[-5,5],/nodata,yrange=[-5,5],/current)
>  !NULL=polyline(xx,yy,connectivity=conn,/data,target=p)
>  w.REFRESH
>  
>  
>  Cheers
>  
>  Ste

Subject: Re: Slow object graphics when plotting multiple lines
Posted by Paul Van Delst[1] on Mon, 04 Apr 2016 15:09:33 GMT
View Forum Message <> Reply to Message

Hello,

On 04/04/16 10:48, Yngvar Larsen wrote:
>  Another trick, using a single array with lines separated by NaN.
>  Thisworks both in direct and function graphics. With these two added, plus
>  the new CONNECTIVITY trick, your TEST routine prints this on my machine
>  (2012 iMac)

I'm amazed at everyone's ability to discover these things! Wow.

But, I think this need for various "tricks" to speed up basic plotting 
functionality is something that the IDL/Harris folks need to fix by 
making PLOT(/OVERPLOT) - with additional keywords if necessary - work 
similarly, i.e. fast.

Page 23 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4285
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92971#msg_92971
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92971
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Similarly when plotting gobs of satellite data on maps, surfaces, 
contours, etc.

The slowness of function graphics when plotting lots and lots of data 
makes it unusable for looking at large datasets.

Other, similar, tools don't have these issues. (Yes, I mean matlab).

cheers,

paulv

Subject: Re: Slow object graphics when plotting multiple lines
Posted by steven.abel on Mon, 04 Apr 2016 15:27:04 GMT
View Forum Message <> Reply to Message

On Monday, 4 April 2016 16:09:36 UTC+1, Paul van Delst  wrote:
>  Hello,
>  
>  On 04/04/16 10:48, Yngvar Larsen wrote:
>>  Another trick, using a single array with lines separated by NaN.
>>  Thisworks both in direct and function graphics. With these two added, plus
>>  the new CONNECTIVITY trick, your TEST routine prints this on my machine
>>  (2012 iMac)
>  
>  I'm amazed at everyone's ability to discover these things! Wow.
>  
>  But, I think this need for various "tricks" to speed up basic plotting 
>  functionality is something that the IDL/Harris folks need to fix by 
>  making PLOT(/OVERPLOT) - with additional keywords if necessary - work 
>  similarly, i.e. fast.
>  
>  Similarly when plotting gobs of satellite data on maps, surfaces, 
>  contours, etc.
>  
>  The slowness of function graphics when plotting lots and lots of data 
>  makes it unusable for looking at large datasets.
>  
>  Other, similar, tools don't have these issues. (Yes, I mean matlab).
>  
>  cheers,
>  
>  paulv

Thank you alx and Yngvar - your suggestions have helped enormously. It is fair to say that without
this newsgroup I would have given up and gone back to Direct graphics for this task. Completely
agree with Paul as well - it shouldn't be this complicated to do a simple plot.

Page 24 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=8308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92972#msg_92972
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92972
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Cheers

Steve

Subject: Re: Slow object graphics when plotting multiple lines
Posted by lecacheux.alain on Mon, 04 Apr 2016 15:54:01 GMT
View Forum Message <> Reply to Message

Le lundi 4 avril 2016 17:09:36 UTC+2, Paul van Delst a écrit :
>  Hello,
>  
>  On 04/04/16 10:48, Yngvar Larsen wrote:
>>  Another trick, using a single array with lines separated by NaN.
>>  Thisworks both in direct and function graphics. With these two added, plus
>>  the new CONNECTIVITY trick, your TEST routine prints this on my machine
>>  (2012 iMac)
>  
>  I'm amazed at everyone's ability to discover these things! Wow.
>  
>  But, I think this need for various "tricks" to speed up basic plotting 
>  functionality is something that the IDL/Harris folks need to fix by 
>  making PLOT(/OVERPLOT) - with additional keywords if necessary - work 
>  similarly, i.e. fast.
>  
>  Similarly when plotting gobs of satellite data on maps, surfaces, 
>  contours, etc.
>  
>  The slowness of function graphics when plotting lots and lots of data 
>  makes it unusable for looking at large datasets.
>  
>  Other, similar, tools don't have these issues. (Yes, I mean matlab).
>  
>  cheers,
>  
>  paulv

As far as I understand, the function PLOT(/OVERPLOT) was NOT designed as being a simple
overplotting routine. When you add a new curve, the entire plot is  actually modified (ranges, axes,
etc...) at the expense of some slowness. I guess that it is a feature from Exelis.
If you want to do a "simple" overplotting (ala OPLOT), an efficient way is to combine POSITION,
CURRENT and [XYZ]RANGE keywords, instead of using OVERPLOT. 
The POLYLINE trick, when many curves are needed, looks like to me somewhat faster than
Matlab or Python equivalents.
alx.

alx.

Page 25 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92973#msg_92973
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92973
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Subject: Re: Slow object graphics when plotting multiple lines
Posted by Yngvar Larsen on Mon, 04 Apr 2016 16:50:59 GMT
View Forum Message <> Reply to Message

On Monday, 4 April 2016 17:54:03 UTC+2, alx  wrote:

>>  Other, similar, tools don't have these issues. (Yes, I mean matlab).

>  As far as I understand, the function PLOT(/OVERPLOT) was NOT designed as being a simple
overplotting routine. When you add a new curve, the entire plot is  actually modified (ranges, axes,
etc...) at the expense of some slowness. I guess that it is a feature from Exelis.

Yes, this "feature" makes this approach O(N^2), which scales terribly beyond a couple of hundred
lines. I don't see why the view needs to be recalculated for each new object, at least not by
default.

Though this use is not really what you should do in IDL anyway since the overhead created by the
loop itself makes even direct graphics slow when then number of lines becomes large (> 10000 or
so).

>  If you want to do a "simple" overplotting (ala OPLOT), an efficient way is to combine
POSITION, CURRENT and [XYZ]RANGE keywords, instead of using OVERPLOT. 

How? The documentation of PLOT() indicates something else (unless I misunderstood you):

******************
OVERPLOT
Set this keyword to 1 (one) to place the graphic on top of the currently-selected graphic within the
current window. The two graphics items will then share the same set of axes. If no current window
exists, then this keyword is ignored and a new window is created.
[...]
Tip: If you want your graphic to have a new set of axes, you should use the CURRENT keyword
instead.

CURRENT
Set this keyword to create the graphic in the current window with a new set of axes. If no window
exists, a new window is created. 
[...]
Tip: If you want your graphic to share the same axes as an existing graphic, you should use the
OVERPLOT keyword instead.
******************

I think it should be possible to do something like 

p = PLOT(randn(seed,num_ points, num_lines)) 

and get what you want without jumping through the hoops involved in constructing the
CONNECTIVITY matrix or adding fake missing data (NaN) to make it work. I don't see why not.
PLOT() currently takes a vector as input, and if you try to apply it to a 2D array, it will flatten to a

Page 26 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92974#msg_92974
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92974
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


1D array first. The latter property is _not_ documented, so the Harris people could easily add this
functionality. It should be <10 lines of code. It would make the life easier for simple cases like this
where all the curves have the same number of points.

>  The POLYLINE trick, when many curves are needed, looks like to me somewhat faster than
Matlab or Python equivalents.

Indeed. And, as I showed, nearly as fast as direct graphics for large number of lines. Which is
quite impressive! 

POLYLINE is of course still very useful when plotting lots of curves with different number of points,
e.g. a map.

-- 
Yngvar

Subject: Re: Slow object graphics when plotting multiple lines
Posted by lecacheux.alain on Mon, 04 Apr 2016 17:15:09 GMT
View Forum Message <> Reply to Message

Le lundi 4 avril 2016 18:51:01 UTC+2, Yngvar Larsen a écrit :
>  On Monday, 4 April 2016 17:54:03 UTC+2, alx  wrote:
>  
>>>  Other, similar, tools don't have these issues. (Yes, I mean matlab).
>  
>>  As far as I understand, the function PLOT(/OVERPLOT) was NOT designed as being a simple
overplotting routine. When you add a new curve, the entire plot is  actually modified (ranges, axes,
etc...) at the expense of some slowness. I guess that it is a feature from Exelis.
>  
>  Yes, this "feature" makes this approach O(N^2), which scales terribly beyond a couple of
hundred lines. I don't see why the view needs to be recalculated for each new object, at least not
by default.
>  
>  Though this use is not really what you should do in IDL anyway since the overhead created by
the loop itself makes even direct graphics slow when then number of lines becomes large (>
10000 or so).
>  
>>  If you want to do a "simple" overplotting (ala OPLOT), an efficient way is to combine
POSITION, CURRENT and [XYZ]RANGE keywords, instead of using OVERPLOT. 
>  
>  How? The documentation of PLOT() indicates something else (unless I misunderstood you):
>  
>  ******************
>  OVERPLOT
>  Set this keyword to 1 (one) to place the graphic on top of the currently-selected graphic within
the current window. The two graphics items will then share the same set of axes. If no current
window exists, then this keyword is ignored and a new window is created.

Page 27 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6343
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92975#msg_92975
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92975
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  [...]
>  Tip: If you want your graphic to have a new set of axes, you should use the CURRENT keyword
instead.
>  
>  CURRENT
>  Set this keyword to create the graphic in the current window with a new set of axes. If no
window exists, a new window is created. 
>  [...]
>  Tip: If you want your graphic to share the same axes as an existing graphic, you should use the
OVERPLOT keyword instead.
>  ******************
>  
>  I think it should be possible to do something like 
>  
>  p = PLOT(randn(seed,num_ points, num_lines)) 
>  
>  and get what you want without jumping through the hoops involved in constructing the
CONNECTIVITY matrix or adding fake missing data (NaN) to make it work. I don't see why not.
PLOT() currently takes a vector as input, and if you try to apply it to a 2D array, it will flatten to a
1D array first. The latter property is _not_ documented, so the Harris people could easily add this
functionality. It should be <10 lines of code. It would make the life easier for simple cases like this
where all the curves have the same number of points.
>  
>>  The POLYLINE trick, when many curves are needed, looks like to me somewhat faster than
Matlab or Python equivalents.
>  
>  Indeed. And, as I showed, nearly as fast as direct graphics for large number of lines. Which is
quite impressive! 
>  
>  POLYLINE is of course still very useful when plotting lots of curves with different number of
points, e.g. a map.
>  
>  -- 
>  Yngvar

>  How? The documentation of PLOT() indicates something else (unless I misunderstood you):
IDL> pl = plot(/TEST)
IDL> pl1 = plot([50,100], [-0.5,0.5], COLOR='red', /CURRENT, POSITION=pl.POSITION,
XRANGE=pl.XRANGE, YRANGE=pl.YRANGE)

Subject: Re: Slow object graphics when plotting multiple lines
Posted by Yngvar Larsen on Mon, 04 Apr 2016 20:10:33 GMT
View Forum Message <> Reply to Message

On Monday, 4 April 2016 19:15:11 UTC+2, alx  wrote:
>  Le lundi 4 avril 2016 18:51:01 UTC+2, Yngvar Larsen a écrit :
>>  How? The documentation of PLOT() indicates something else (unless I misunderstood you):

Page 28 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=6991
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37470&goto=92979#msg_92979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=92979
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  IDL> pl = plot(/TEST)
>  IDL> pl1 = plot([50,100], [-0.5,0.5], COLOR='red', /CURRENT, POSITION=pl.POSITION,
XRANGE=pl.XRANGE, YRANGE=pl.YRANGE)

Thanks. Interesting. This seems to do exactly what the documentation says /OVERPLOT should
do, by faking a shared axis? (typical direct graphics trick!) And completely contrary to the tip I
cited from the /CURRENT docs:

"Tip: If you want your graphic to share the same axes as an existing graphic, you should use the
OVERPLOT keyword instead. "

Also, at least on my machine, /CURRENT is 4x slower than the /OVERPLOT in OP's loop case,
even with hardcoded range/position according to your suggestion. Strange.

-- 
Yngvar

Page 29 of 29 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

