
Subject: losing pointers when concatenating array of structures
Posted by MarioIncandenza on Mon, 09 Jan 2017 06:35:37 GMT
View Forum Message <> Reply to Message

Hi IDL Wizards,

That topic is a mouthful, but I haven't encountered a tricky problem like this in a while, and I
wanted your help to understand what's really going on here. Here's the code sample:

for i=0,1 do begin
 undefine,struct
 struct=create_struct('array',ptr_new(lindgen(i+1)))
 if n_elements(structarray) eq 0 then structarray=struct else structarray=[structarray,struct]
 help,*structarray[i].array ; looking for error
; this is where the error will happen
 if(i gt 0) then help,*structarray[i-1].array
endfor
end

Here's the result:
% Compiled module: $MAIN$.
<PtrHeapVar23543>
 LONG = Array[1]
<PtrHeapVar23544>
 LONG = Array[2]
% Invalid pointer: <POINTER (<PtrHeapVar23543>)>.
% Execution halted at: $MAIN$ 9

Here's the fix:
 if n_elements(structarray) eq 0 then structarray=temporary(struct) else
structarray=[structarray,temporary(struct)]

If you use TEMPORARY(), this works. If you do not, it fails. Can someone help me understand
this?

Happy New Year's everyone,

--Edward H.

Subject: Re: losing pointers when concatenating array of structures
Posted by Heinz Stege on Mon, 09 Jan 2017 10:10:27 GMT
View Forum Message <> Reply to Message

Well, pointers are tricky sometimes. I will try to explain. The
statement
 structarray=struct

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5297
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37773&goto=94050#msg_94050
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=94050
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4560
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37773&goto=94051#msg_94051
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=94051
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

in the first loop-path creates a new structure with a new pointer
variable pointing to the _same_ heap variable as struct.array. The
heap variable is _not_ copied.

Undefine is not an IDL routine. I assume you have downloaded this
procedure from the Coyote library. In the second loop path undefine
destroys the struct.array pointer. I.e. it deletes the heap variable
pointed to by struct.array as well as structarray.array.

Your fix with temporary(struct) moves the structure from struct to
structarray. The undefine procedure can't delete the heap variable
anymore, because struct is undefined at that time.

I'm not sure, that I use the right terms in my explanation. I hope, it
gets clear for you yet.

Heinz

Subject: Re: losing pointers when concatenating array of structures
Posted by MarioIncandenza on Mon, 09 Jan 2017 16:44:29 GMT
View Forum Message <> Reply to Message

On Monday, January 9, 2017 at 2:09:58 AM UTC-8, Heinz Stege wrote:
> Well, pointers are tricky sometimes. I will try to explain.

That is a good answer, thank you Heinz. So here's a question: what if I want to make a *copy* of a
structure-containing-pointers, creating new heap variables for all the pointers in the structure?
Maybe this cannot be done automatically? This is the problem that had me searching the IDL help
for a STRUCT_COPY procedure.

Subject: Re: losing pointers when concatenating array of structures
Posted by Jim Pendleton on Mon, 09 Jan 2017 19:05:22 GMT
View Forum Message <> Reply to Message

On Monday, January 9, 2017 at 9:44:30 AM UTC-7, Edward Hyer wrote:
> On Monday, January 9, 2017 at 2:09:58 AM UTC-8, Heinz Stege wrote:
>> Well, pointers are tricky sometimes. I will try to explain.
>
> That is a good answer, thank you Heinz. So here's a question: what if I want to make a *copy*
of a structure-containing-pointers, creating new heap variables for all the pointers in the structure?
Maybe this cannot be done automatically? This is the problem that had me searching the IDL help
for a STRUCT_COPY procedure.

A quick trick for making a *deep copy* is to SAVE the structure to an output file, then RESTORE
the data, making sure you don't accidentally overwrite your original variable when you restore.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=5297
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37773&goto=94052#msg_94052
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=94052
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7446
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37773&goto=94053#msg_94053
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=94053
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

All included heap variable references (as well as all their dependencies) will be duplicated.

If you need a procedure that is not as deep, you will need to write your own logic. In ENVI, this is
accomplished through dehydrate/rehydrate techniques.

Jim P.

Subject: Re: losing pointers when concatenating array of structures
Posted by Heinz Stege on Mon, 09 Jan 2017 20:33:05 GMT
View Forum Message <> Reply to Message

There is a deep_copy function in the JHU/APL IDL Library:
http://fermi.jhuapl.edu/idl/. Seems to me, that this is what Edward is
looking for.

More practicable than saving to a file and restoring it. ;-)

Good luck, Heinz

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4560
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=37773&goto=94054#msg_94054
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=94054
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

