
Subject: Re: Object based/oriented IDL ? Ever likely ?
Posted by Paul Schopf on Thu, 21 Mar 1996 08:00:00 GMT
View Forum Message <> Reply to Message

Julien Flack wrote:
>
> I am very impressed with a number of features of IDL. However, I think
> that its lacking support for structure (primarily data structures) due to
> its historical affiliation with Fortran (no flames please). This weakness
> becomes noticable when you reach a 3,000+ line application (IMHO).
>
> I think that a version of IDL using object based/oriented technology would
> be immensely powerful and would reach a far wider audience. Is there a
> desire for OO technology in the scientific community, or is Fortran still
> predominant ? Have RSI made any moves in this direction ?
>
> Any news, views and gossip welcome ...
>
> --
> Julien.

 Am I missing something here? I enclose a snippet of a code which
I believe does have structures (Very similar to Fortran-90--no more flames, please)

 ; Grid_Index : an i,j pair
 Gi = { GRID_INDEX , I: LONG(0), J:LONG(0) }

 ; Point_t: an (x,y) pair
 pt = { POINT_T, X: 1.0 , Y: 1.0 }

 ; Poly8_t number of points, then space for up to 8 points
 P8 = { POLY8_T, N: LONG(0), VERT: REPLICATE(pt,8) }

 ; Grid record, key index, Grid index, polygon, area
 GR = { GRID_REC, ID : LONG(0), G : Gi , P: P8 , AREA : 1.0 }

 plot,[-180,180],[-90,90],/nod

 nrecs = LONG(0)
 openr, iu, 'grid1.db', /f77,/GET_LUN
 readu, iu, nrecs
 rec = gr

 for i=0,nrecs-1 do begin
 readu, iu, rec
 plots, rec.p.Vert(0:4).x,rec.p.Vert(0:4).y

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1408
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4029&goto=5961#msg_5961
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5961
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 endfor

 free_lun,iu
 end

Now if you want to discuss encapsulation and inheritance, I agree,
IDL is not OOP, but these are data structures, and they are very
easy to use, and you can write functions for them, etc. etc.

BTW, a 3000 line IDL app is EXTREMELY long.

--
Paul Schopf mailto://schopf@gsfc.nasa.gov
Coupled Climate Dynamics Group/971 http://ccdg.gsfc.nasa.gov/~paul
NASA Goddard Space Flight Center
Greenbelt, MD 20771

Subject: Re: Object based/oriented IDL ? Ever likely ?
Posted by Ken Knighton on Fri, 22 Mar 1996 08:00:00 GMT
View Forum Message <> Reply to Message

Paul Schopf <schopf@gsfc.nasa.gov> wrote:
> Now if you want to discuss encapsulation and inheritance, I agree,
> IDL is not OOP, but these are data structures, and they are very
> easy to use, and you can write functions for them, etc. etc.

IDL is not an OOL, but it does have a number of features that
make it possible to do things traditionally supported by
OOLs although perhaps not with the same elegance:

1) Polymorphism

 a. Functions/procedures can be called with a variable number of
 formal parameters.

 b. Since identifiers are dynamically typed, a single func/pro
 can be devised that performs an operation on a variety of
 input argument types.

2) Inheritance

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1009
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4029&goto=5952#msg_5952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=5952
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 a. Keyword inheritance (_EXTRA) can be used to allow a wrapper
 routine to "inherit" the capability of another routine
 and add functionality to it. For example, one can write
 wrapper routines to the PLOT procedure that do some
 other things but allow the calling program to utilize all
 of the present and future PLOT command keywords without
 having to keep track of all of them.

 b. Virtual funcs/pros: Use of the EXECUTE, CALL_PROCEDURE, and
 CALL_FUNCTION routines allows a programmer to set up
 "classes" that have user replaceable member routines by
 allowing the calling program to pass the names of the new
 member routines into the "class" via arguments or to place
 them into a common block for the "class".

 c. Various keywords to widget routines give the programmer the
 ability (with the above techniques) to do almost everything
 that OOLs do as far as widgets are concerned. This includes
 the ability to have constructors/destructors (notify_realize
 and kill_notify), different instantiations of a class (this
 is what an object is) by keeping a widget's information in
 a state variable rather than a common block, encapsulation
 of data in a widget's state variable, and etc.

3) Encapsulation (data hiding)

 IDL doesn't have global variables (except for system variables) and
 therefore automatically has data hiding unless one uses common blocks.
 Even so, common blocks are only "public" to routines that reference
 the common block. A judicious use of modular programming techniques,
 naming conventions, the @ command to include "header" files, and
 other techniques give the programmer the ability to do a pretty
 good job of encapsulating data in the module that needs it. If
 there are going to be various instantiations of a module (objects),
 then it is possible to use widget state variables or handles to
 provide data encapsulation at the object level.

4) Operator overloading

 IDL doesn't support this. Although it might be convenient to
 overload operators as far as command line users go, from the
 application developer standpoint (the guys that use C++, SmallTalk,
 and other OOLs), many feel that operator overloading is a bad
 practice and attempt to avoid it.

It is unfortunate that some of IDL's truly powerful features tend to
be hidden or unknown to the majority of users. It is also unfortunate
that RSI doesn't use them in most of the code they supply with IDL.

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

It would be nice to have a bunch of tools supplied with IDL that were
written in IDL using excellent software engineering practices and
the powerful techniques that are already available in the language.
That way, users would have examples to go by when creating their own
cool software.

Finally, IDL is used in two ways: interactively and for application
development. I feel that many improvements can be made for each mode
of operation, but an improvement for one mode is not necessarily a
desirable improvement for the other. I look at IDL from an
application developer standpoint.

>
>
> BTW, a 3000 line IDL app is EXTREMELY long.
>

Sounds rather small to me, but that's the way it goes with
perspectives. :-)

Ken Knighton knighton@gav.gat.com knighton@cts.com
General Atomics
San Diego, CA

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

