Subject: Re: quick testing of string variables
Posted by rivers on Tue, 23 Apr 1996 07:00:00 GMT

View Forum Message <> Reply to Message

In article <moninger-2304960900010001@zirkle.fsl.noaa.gov>, moninger@fsl.noaa.gov (Bill
Moninger) writes:

> | have an array called station_name, dimensioned (6,n). Each item is a

> string 6 characters long. | would like to quickly test station_name

> against a particular string variable, find_this_station, another string of

> dimension 6.

>

> |s there any way to do this without using loops?

>

> If | have to use loops, does anyone have a tip on the fastest way to do so?
>

> |s there are better way to configure the array station_name to make such
> tests (against a particular station name) faster?

Here is how to do it:

IDL>a =['sl', 's2', 's3', 's4', 'sb', 's6']
IDL> t = where(a eq 's4')
IDL> print, t

3

The where() function finds the index number of the string in the array which
matches your test string. It returns -1 if there is no match.

Mark Rivers (312) 702-2279 (office)

CARS (312) 702-9951 (secretary)

Univ. of Chicago (312) 702-5454 (FAX)

5640 S. Ellis Ave. (708) 922-0499 (home)

Chicago, IL 60637 rivers@cars3.uchicago.edu (Internet)

Subject: Re: quick testing of string variables
Posted by meron on Wed, 24 Apr 1996 07:00:00 GMT

View Forum Message <> Reply to Message

In article <4Imlas$61lf@newsl.ucsd.edu>, David Foster <foster@biall.ucsd.edu> writes:
> moninger@fsl.noaa.gov (Bill Moninger) wrote:

>>

>> | have an array called station_name, dimensioned (6,n). Each itemis a

>> string 6 characters long. | would like to quickly test station_name

>> against a particular string variable, find_this_station, another string of

>> dimension 6.

>>

Page 1 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6123#msg_6123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6112#msg_6112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> | don't quite get from your message the dimensions of your

> second string variable. Is it of LENGTH 6?

>

> When you need to compare a STRARR(N) against a single string (or more
> generally any array against a scalar) use the WHERE function:

>

> indices = WHERE(station_name eq find_this_station)

>

> Read the online help on the WHERE() function...it's extremely useful.

>

> Also useful are UNIQ(), TOTAL(), SORT(), REFORM(), REVERSE()

> and SHIFT().

>

You can also use a function | wrote, STRMATCH, which allows for

comparisons using partial names (and other interesting things). Since

it is calling other functions in my library, I'm attaching a package

of six routines: CAST, DEFAULT, TYPE, STREQ, STRMATCH, STRPARSE. See
below

*kk CAST *k%k
Function Cast, x, low, high

T

: NAME:

; CAST

: PURPOSE:

; Generalized type casting. Converts all variables whose type code is
; out of the range [LOW,HIGH] into this range.

; CATEGORY:

; Type conversion

; CALLING SEQUENCE:

; Result = CAST(X, [LOW [,HIGH]])

; INPUTS:

;X

; Numerical, arbitrary, or a character representation of a number(s).

;. LOW

; Number representing a type code, range (1:9). If greater than 9, it is
;setto 9. If less then 1, or not given, it is set to 1.

; OPTIONAL INPUT PARAMETERS:

; HIGH

; Type code, same as LOW. Default value is 9. If provided and less then
; LOW, it is set to LOW.

Page 2 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; KEYWORD PARAMETERS:

; None.

; OUTPUTS:

; If the type of X is < LOW, CAST returns X converted to type LOW.
; If the type of X is > HIGH, CAST returns X converted to type HIGH.
; Otherwise CAST returns X.

; OPTIONAL OUTPUT PARAMETERS:

; None.

; COMMON BLOCKS:

: None.

; SIDE EFFECTS:

; None.

; RESTRICTIONS:

; 1) An attempt to convert a string which is NOT a character

; representation of a number into a numeric type will yield error.

; 2) X cannot be a structure (but can be a structure element).

; 3) The value 8 for either LOW or HIGH is not allowed (since it

; corresponds to structure type).

; PROCEDURE:

; Identifies the type of X, and if out of the range given by [LOW,HIGH]
; calls the proper conversion routine using the system routine

; CALL_FUNCTION. Also uses TYPE from MIDL.

; MODIFICATION HISTORY:

; Created 25-DEC-1991 by Mati Meron.

; Modified 15-JUN-1995 by Mati Meron to accept the new DOUBLECOMPLEX type.

on_error, 1

conv = ['nada’, 'byte’, 'fix', 'long’, 'float’, 'double’, ‘complex’, $
'string’, 'nonap’, 'dcomplex’]

if n_elements(low) eqOthenilo=1elseilo=1 > fix(low) <9
if n_elements(high) eq 0 then ihi = 9 else ihi = ilo > fix(high) < 9
ityp = Type(x)

if ilo eq 8 or ihi eq 8 or ityp eq 8 or ityp eq O then $

message, 'Can"t do that!' else $

if ityp It ilo then return, call_function(conv(ilo),x) else $

if ityp gt ihi then return, call_function(conv(ihi),x) else return, x

end

wek DEFAULT ***
Function Default, x, y, strict = strit, dtype = deft, low = lot, high = hit

+

Page 3 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; NAME:

; DEFAULT

; PURPOSE:

; Provides an automatic default value for nondefined parameters.

; CATEGORY:

; Programming.

; CALLING SEQUENCE:

; Result = DEFAULT(X, Y [, keywords])

; INPUTS:

XY

; Arbitrary, at least one needs to be defined.

; OPTIONAL INPUT PARAMETERS:

: None.

; KEYWORD PARAMETERS:

; ISTRICT

; Switch. If set, X is considered defined only if it is of the same type
;as’y.

; IDTYPE

; Switch. If set, the result will be typecast into the type of Y.

; Explicit settings for LOW and/or HIGH (see below) override DTYPE.
; LOW

; Numeric value between 1 to 9 (8 is excluded). If given, the result is
; of type >= LOW.

; HIGH

; Numeric value between 1 to 9 (8 is excluded). If given, the result is
; of type <= HIGH.

; OUTPUTS:

: X if it is defined, otherwise Y.

; OPTIONAL OUTPUT PARAMETERS:

; None.

; COMMON BLOCKS:

: None.

; SIDE EFFECTS:

; None.

; RESTRICTIONS:

; All type casting is bypassed if the result is of type 8 (STRUCTURE).
; PROCEDURE:

; Uses the functions CAST and TYPE from MIDL.

; MODIFICATION HISTORY:

; Created 15-JUL-1991 by Mati Meron.

; Modified 15-NOV-1993 by Mati Meron. The keyword TYPE has been replaced
; by STRICT. Added keywords DTYPE, LOW and HIGH.

on_error, 1
xtyp = Type(x)
ytyp = Type(y)

Page 4 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

if not (xtyp eq 0 or keyword_set(strit)) then atyp = xtyp else $
if ytyp ne 0 then atyp = ytyp else message,'Insufficient data!'

if xtyp eq atyp thenres =x elseres =y

if keyword_set(deft) then begin
if n_elements(lot) eq O then lot = ytyp
if n_elements(hit) eq O then hit = ytyp
end

if atyp eq 8 then return, res else return, Cast(res,lot,hit)
end

*k% STREQ *%k%
Function Streq, strl, str2, len, caseon = cas, warn = wn

T+

; NAME:

; STREQ

; PURPOSE:

; Compares for equality the first LEN characters of STR1, STR2.

; If LEN is O, or absent, the whole strings are compared.

; CATEGORY:

; String Processing

; CALLING SEQUENCE:

; Result = STREQ(STR1, STR2 [,LEN] [, keywords])

; INPUTS:

; STR1, STR2

; character strings, mandatory.

; OPTIONAL INPUT PARAMETERS:

; LEN

; Number of characters to compare. Default is 0, translating to a full
; comparison.

; KEYWORD PARAMETERS:

; ICASEON

; Switch. If set the comparison is case sensitive. Default is ignore case.
; /WARN

; Switch. If set, a warning is issued whenever STR1 or STR2 is not a
; character variable. Default is no warning.

; OUTPUTS:

; 1b for equal, Ob for nonequal.

; OPTIONAL OUTPUT PARAMETERS:

; None.

; COMMON BLOCKS:

; None.

Page 5 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; SIDE EFFECTS:

; None.

; RESTRICTIONS:

; None.

; PROCEDURE:

; Straightforward. Using DEFAULT and TYPE from MIDL.
; MODIFICATION HISTORY:

; Created 15-JUL-1991 by Mati Meron.

if Type(strl) ne 7 or Type(str2) ne 7 then begin
if keyword_set(wn) then message, 'Not a string!’, /continue
return, Ob

endif

dlen = Default(len,0)
if dlen eq 0 then dlen = max([strlen(strl),strlen(str2)])
if not keyword_set(cas) then begin
duml = strupcase(strl)
dum2 = strupcase(str2)
endif else begin
duml = strl
dum2 = str2
endelse

return, strmid(dum1,0,dlen) eq strmid(dum2,0,dlen)
end

*+% STRMATCH ***

Function StrMatch, str, list, len, caseon = cas, all = all

T+

; NAME:

; STRMATCH

; PURPOSE:

; Compares the string STR with the strings in the array LIST. Comparison
; Is done for the first LEN characters, or all of them if LEN is 0. If a
; match is found, STR is replaced by the full string from the list (or
; If the keyword /ALL is set, by an array containing all the matching
; strings).

; CATEGORY:

; String Processing

; CALLING SEQUENCE:

; Result = STRMATCH(STR, LIST [, LEN] [, keywords])

; INPUTS:

Page 6 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; STR

; Character string.

; LIST

; Character array.

; OPTIONAL INPUT PARAMETERS:

; LEN

; The number of characters to compare. Default is full comparison.
; KEYWORD PARAMETERS:

; /ICASEON

; Switch. If set the comparison is case sensitive. Default is ignore case.
; JALL

; Switch. If set, returns the indices of all the matching elements.

; OUTPUTS:

: Returns the index of the first match, or -1l if no match is found.

; Optionally (see keyword ALL above) returns all the matching indices.
; OPTIONAL OUTPUT PARAMETERS:

; None.

; COMMON BLOCKS:

; None.

; SIDE EFFECTS:

; None other then the substitution in STR.

; RESTRICTIONS:

; None.

; PROCEDURE:

; Uses the function STREQ from MIDL.

; MODIFICATION HISTORY:

; Created 15-JUL-1991 by Mati Meron.

; Modified 20-NOV-1993 by Mati Meron. Added keyword ALL.

match = where(Streq(str,list,len,caseon = cas), nmatch)
if not keyword_set(all) then match = match(0)
if nmatch gt 0 then str = list(match)

return, match
end

*** STRPARSE ***
Function StrParse, line, delim, list

+
: NAME:

: STRPARSE
: PURPOSE:

; Parses the string LINE using the characters in DELIM as delimiters.

Page 7 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Puts individual pieces into consecutive locations in LIST.

; CATEGORY:

; String Processing

; CALLING SEQUENCE:

; Result = STRPARSE(LINE, DELIM [, LIST])

; INPUTS:

; LINE

; Character string.

; DELIM

; Character string. Each Character of DELIM is used as a delimiter.
; OPTIONAL INPUT PARAMETERS:

; None.

; KEYWORD PARAMETERS:

: None.

; OUTPUTS:

; Returns the number of pieces found minus one i.e. the index of the last
; element of LIST if LIST is provided. If LINE is a null string or not a
; string, the function returns -11.

; OPTIONAL OUTPUT PARAMETERS:

; LIST

; Character array. If name is provided, the pieces of LINE resulting
; from the parsing process are returned in consecutive locations in LIST.
; COMMON BLOCKS:

; None.

; SIDE EFFECTS:

; None.

; RESTRICTIONS:

; None.

; PROCEDURE:

; Straightforward. Using the function TYPE from MIDL.

; MODIFICATION HISTORY:

; Created 15-JUL-1991 by Mati Meron.

if Type(line) ne 7 then return, -1l
index = -11
list ="
len = strlen(line)
fori=0l, len - 1 do begin
if strpos(delim,strmid(line,i,1)) ne -1 then index = [index,i]
endfor
index = [index,len]
for i = 0l, n_elements(index) - 2 do begin
list = [list,strmid(line,index(i) + 1,index(i+1) - index(i) -1)]
endfor
inlist = where(list ne ",items)
if items ne 0O then list = list(inlist) else list = list([0])

Page 8 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

return, long(items - 1)
end

*k*k TYPE *kk
Function Type, x

T+
: NAME:

; TYPE

: PURPOSE:

; Finds the type class of a variable.

; CATEGORY:

; Programming.

; CALLING SEQUENCE:

; Result = TYPE(X)

; INPUTS:

;X

; Arbitrary, doesn't even need to be defined.

; OPTIONAL INPUT PARAMETERS:

; None.

; KEYWORD PARAMETERS:

; None.

; OUTPUTS:

; Returns the type of X as a long integer, in the (0,9) range.
; OPTIONAL OUTPUT PARAMETERS:

; None.

; COMMON BLOCKS:

; None.

; SIDE EFFECTS:

; None.

; RESTRICTIONS:

; None.

; PROCEDURE:

; Extracts information from the SIZE function.
; MODIFICATION HISTORY:

; Created 15-JUL-1991 by Mati Meron.

dum = size(x)
return, dum(dum(0) + 1)
end

Page 9 of 12 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Mati Meron | "When you argue with a fool,
meron@cars.uchicago.edu | chances are he is doing just the same"

Subject: Re: quick testing of string variables
Posted by David Foster on Wed, 24 Apr 1996 07:00:00 GMT

View Forum Message <> Reply to Message

moninger@fsl.noaa.gov (Bill Moninger) wrote:

| have an array called station_name, dimensioned (6,n). Each item is a
string 6 characters long. | would like to quickly test station_name
against a particular string variable, find_this_station, another string of
dimension 6.

VVVYVYVYV

| don't quite get from your message the dimensions of your
second string variable. Is it of LENGTH 67

When you need to compare a STRARR(N) against a single string (or more
generally any array against a scalar) use the WHERE function:

indices = WHERE(station_name eq find_this_station)
Read the online help on the WHERE() function...it's extremely useful.

Also useful are UNIQ(), TOTAL(), SORT(), REFORM(), REVERSE()
and SHIFT().

Dave Foster
foster@biall.ucsd.edu

Subject: Re: quick testing of string variables
Posted by steinhh on Wed, 24 Apr 1996 07:00:00 GMT

View Forum Message <> Reply to Message

In article <moninger-2304960900010001 @?zirkle.fsl.noaa.gov>, moninger@fsl.noaa.gov (Bill
Moninger) writes:

[>

|> I have an array called station_name, dimensioned (6,n). Each itemis a

|> string 6 characters long. | would like to quickly test station_name

|> against a particular string variable, find_this_station, another string of

|> dimension 6.

|>

|> Is there any way to do this without using loops?

[>

Page 10 of 12 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1324
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6113#msg_6113
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6113
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6118#msg_6118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

|> If I have to use loops, does anyone have a tip on the fastest way to do so?
[>

|> Is there are better way to configure the array station_name to make such
|> tests (against a particular station name) faster?

[>

It depends a little on what you mean my "testing A against B".

If it means, (as your variable names cleverly point to)

that you want to find out which entry - if any - in station_name

equals the value of find_this_station, then there's hope (I think).

For clarity assume that the strings have length "len”, and station_name
has dimension (n1,n2). len, n1 and n2 should be LONGs for safety.

byt = byte(station_name) ; Should be a byte array, dimension (len,n1,n2)
str = string(reform(byt,len*n1*n2,/overwrite)) ; Make a looong string.
pos = strpos(str,find_this_station)

; Of course, if pos eq -1 then nothing was found.

; But if station (0,0) is "AB" and station (1,0) is "AC", they
; will end up in str as "ABAC....".

; If you are looking for station "BA" then you could be in trouble,

; but the "pos mod len ne 0" test discovers this.

if pos eq -1 then print,"No such station found" $
else begin
;; We'll have to be careful here:
if pos mod len ne 0 then print,"Bummer -- wrong number - indecisive"
X = (pos/len) mod nl
y = (pos/len)/nl
end

;; You'll find your station in station_name(X,y)

The problem with AB + AC = ABAC can be fixed by adding a separator
character that's never used in the station names, e.g.:

byt = byte(station_name +'@") ;; (andlen=len+ 1)

This is of course at the cost of one extra string array copying
operation. You might never need it given specific station names.

Regards,

Page 11 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Stein Vidar Hagfors Haugan

Subject: Re: quick testing of string variables
Posted by plugge on Wed, 24 Apr 1996 07:00:00 GMT

View Forum Message <> Reply to Message

In article <moninger-2304960900010001 @?zirkle.fsl.noaa.gov>, moninger@fsl.noaa.gov (Bill
Moninger) writes:

[>1 have an array called station_name, dimensioned (6,n). Each itemis a
|>string 6 characters long. | would like to quickly test station_name
|>against a particular string variable, find_this_station, another string of
|>dimension 6.

[>

|>Is there any way to do this without using loops?

[>

[>1f I have to use loops, does anyone have a tip on the fastest way to do so?
|>

|>Is there are better way to configure the array station_name to make such
|>tests (against a particular station name) faster?

[>

|>I shall appreciate any help anyone can provide.

|>

|>-Bill Moninger

|>--

|>Bill Moninger, NOAA/Forecast Systems Laboratory.

|[>home: 303-494-1709, work: 303-497-6435

[>

Bill,
you can simply do the logical test "eq' to the two arrays:

eql_array = station_name eq find_this_station

The result is an array egl_array containing 1 or 0 according to the comparison
of the corresponding elements of the two arrays.

Michael Plugge _ Fachhochschule Mannheim
Institute for Statistics /\ Hochschule fuer Technik und Gestaltung
and Image Processing / \ Email: plugge@biv7.sr.fh-mannheim.de
Speyerer Str. 4 [\ Tel: 06212926208
68163 Mannheim / \ --0 A
Germany / -- -\<- W

/ \ O 1 Wn

Page 12 of 12 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6120#msg_6120
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6120
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

