
Subject: Re: quick testing of string variables
Posted by rivers on Tue, 23 Apr 1996 07:00:00 GMT
View Forum Message <> Reply to Message

In article <moninger-2304960900010001@zirkle.fsl.noaa.gov>, moninger@fsl.noaa.gov (Bill
Moninger) writes:
> I have an array called station_name, dimensioned (6,n). Each item is a
> string 6 characters long. I would like to quickly test station_name
> against a particular string variable, find_this_station, another string of
> dimension 6.
>
> Is there any way to do this without using loops?
>
> If I have to use loops, does anyone have a tip on the fastest way to do so?
>
> Is there are better way to configure the array station_name to make such
> tests (against a particular station name) faster?

Here is how to do it:

IDL> a = ['s1', 's2', 's3', 's4', 's5', 's6']
IDL> t = where(a eq 's4')
IDL> print, t
 3

The where() function finds the index number of the string in the array which
matches your test string. It returns -1 if there is no match.

 __
Mark Rivers (312) 702-2279 (office)
CARS (312) 702-9951 (secretary)
Univ. of Chicago (312) 702-5454 (FAX)
5640 S. Ellis Ave. (708) 922-0499 (home)
Chicago, IL 60637 rivers@cars3.uchicago.edu (Internet)

Subject: Re: quick testing of string variables
Posted by meron on Wed, 24 Apr 1996 07:00:00 GMT
View Forum Message <> Reply to Message

In article <4lm1as$61f@news1.ucsd.edu>, David Foster <foster@bial1.ucsd.edu> writes:
> moninger@fsl.noaa.gov (Bill Moninger) wrote:
>>
>> I have an array called station_name, dimensioned (6,n). Each item is a
>> string 6 characters long. I would like to quickly test station_name
>> against a particular string variable, find_this_station, another string of
>> dimension 6.
>>

Page 1 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=7
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6123#msg_6123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6112#msg_6112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6112
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> I don't quite get from your message the dimensions of your
> second string variable. Is it of LENGTH 6?
>
> When you need to compare a STRARR(N) against a single string (or more
> generally any array against a scalar) use the WHERE function:
>
> 	indices = WHERE(station_name eq find_this_station)
>
> Read the online help on the WHERE() function...it's extremely useful.
>
> Also useful are UNIQ(), TOTAL(), SORT(), REFORM(), REVERSE()
> and SHIFT().
>

You can also use a function I wrote, STRMATCH, which allows for
comparisons using partial names (and other interesting things). Since
it is calling other functions in my library, I'm attaching a package
of six routines: CAST, DEFAULT, TYPE, STREQ, STRMATCH, STRPARSE. See
below

 __ _______________

 *** CAST ***

 Function Cast, x, low, high

 ;+
 ; NAME:
 ;	CAST
 ; PURPOSE:
 ;	Generalized type casting. Converts all variables whose type code is
 ;	out of the range [LOW,HIGH] into this range.
 ; CATEGORY:
 ;	Type conversion
 ; CALLING SEQUENCE:
 ;	Result = CAST(X, [LOW [,HIGH]])
 ; INPUTS:
 ; X
 ;	Numerical, arbitrary, or a character representation of a number(s).
 ; LOW
 ;	Number representing a type code, range (1:9). If greater than 9, it is
 ;	set to 9. If less then 1, or not given, it is set to 1.
 ; OPTIONAL INPUT PARAMETERS:
 ; HIGH
 ;	Type code, same as LOW. Default value is 9. If provided and less then
 ;	LOW, it is set to LOW.

Page 2 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; KEYWORD PARAMETERS:
 ;	None.
 ; OUTPUTS:
 ;	If the type of X is < LOW, CAST returns X converted to type LOW.
 ;	If the type of X is > HIGH, CAST returns X converted to type HIGH.
 ;	Otherwise CAST returns X.
 ; OPTIONAL OUTPUT PARAMETERS:
 ;	None.
 ; COMMON BLOCKS:
 ;	None.
 ; SIDE EFFECTS:
 ;	None.
 ; RESTRICTIONS:
 ;	1) An attempt to convert a string which is NOT a character
 ;	 representation of a number into a numeric type will yield error.
 ;	2) X cannot be a structure (but can be a structure element).
 ;	3) The value 8 for either LOW or HIGH is not allowed (since it
 ;	 corresponds to structure type).
 ; PROCEDURE:
 ;	Identifies the type of X, and if out of the range given by [LOW,HIGH]
 ;	calls the proper conversion routine using the system routine
 ;	CALL_FUNCTION. Also uses TYPE from MIDL.
 ; MODIFICATION HISTORY:
 ;	Created 25-DEC-1991 by Mati Meron.
 ;	Modified 15-JUN-1995 by Mati Meron to accept the new DOUBLECOMPLEX type.
 ;-

 on_error, 1
 conv = ['nada', 'byte', 'fix', 'long', 'float', 'double', 'complex', $
 	 'string', 'nonap', 'dcomplex']
 if n_elements(low) eq 0 then ilo = 1 else ilo = 1 > fix(low) < 9
 if n_elements(high) eq 0 then ihi = 9 else ihi = ilo > fix(high) < 9

 ityp = Type(x)
 if ilo eq 8 or ihi eq 8 or ityp eq 8 or ityp eq 0 then $
 message, 'Can''t do that!' else $
 if ityp lt ilo then return, call_function(conv(ilo),x) else $
 if ityp gt ihi then return, call_function(conv(ihi),x) else return, x

 end

 *** DEFAULT ***

 Function Default, x, y, strict = strit, dtype = deft, low = lot, high = hit

 ;+

Page 3 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; NAME:
 ;	DEFAULT
 ; PURPOSE:
 ;	Provides an automatic default value for nondefined parameters.
 ; CATEGORY:
 ;	Programming.
 ; CALLING SEQUENCE:
 ;	Result = DEFAULT(X, Y [, keywords])
 ; INPUTS:
 ; X, Y
 ;	Arbitrary, at least one needs to be defined.
 ; OPTIONAL INPUT PARAMETERS:
 ;	None.
 ; KEYWORD PARAMETERS:
 ; /STRICT
 ;	Switch. If set, X is considered defined only if it is of the same type
 ;	as Y.
 ; /DTYPE
 ;	Switch. If set, the result will be typecast into the type of Y.
 ;	Explicit settings for LOW and/or HIGH (see below) override DTYPE.
 ; LOW
 ;	Numeric value between 1 to 9 (8 is excluded). If given, the result is
 ;	of type >= LOW.
 ; HIGH
 ;	Numeric value between 1 to 9 (8 is excluded). If given, the result is
 ;	of type <= HIGH.
 ; OUTPUTS:
 ;	X if it is defined, otherwise Y.
 ; OPTIONAL OUTPUT PARAMETERS:
 ;	None.
 ; COMMON BLOCKS:
 ;	None.
 ; SIDE EFFECTS:
 ;	None.
 ; RESTRICTIONS:
 ;	All type casting is bypassed if the result is of type 8 (STRUCTURE).
 ; PROCEDURE:
 ;	Uses the functions CAST and TYPE from MIDL.
 ; MODIFICATION HISTORY:
 ;	Created 15-JUL-1991 by Mati Meron.
 ;	Modified 15-NOV-1993 by Mati Meron. The keyword TYPE has been replaced
 ;	by STRICT. Added keywords DTYPE, LOW and HIGH.
 ;-

 on_error, 1
 xtyp = Type(x)
 ytyp = Type(y)

Page 4 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 if not (xtyp eq 0 or keyword_set(strit)) then atyp = xtyp else $
 if ytyp ne 0 then atyp = ytyp else message,'Insufficient data!'

 if xtyp eq atyp then res = x else res = y

 if keyword_set(deft) then begin
 	if n_elements(lot) eq 0 then lot = ytyp
 	if n_elements(hit) eq 0 then hit = ytyp
 end

 if atyp eq 8 then return, res else return, Cast(res,lot,hit)
 end

 *** STREQ ***

 Function Streq, str1, str2, len, caseon = cas, warn = wn

 ;+
 ; NAME:
 ;	STREQ
 ; PURPOSE:
 ;	Compares for equality the first LEN characters of STR1, STR2.
 ;	If LEN is 0, or absent, the whole strings are compared.
 ; CATEGORY:
 ;	String Processing
 ; CALLING SEQUENCE:
 ;	Result = STREQ(STR1, STR2 [,LEN] [, keywords])
 ; INPUTS:
 ; STR1, STR2
 ;	character strings, mandatory.
 ; OPTIONAL INPUT PARAMETERS:
 ; LEN
 ;	Number of characters to compare. Default is 0, translating to a full
 ;	comparison.
 ; KEYWORD PARAMETERS:
 ; /CASEON
 ;	Switch. If set the comparison is case sensitive. Default is ignore case.
 ; /WARN
 ;	Switch. If set, a warning is issued whenever STR1 or STR2 is not a
 ;	character variable. Default is no warning.
 ; OUTPUTS:
 ;	1b for equal, 0b for nonequal.
 ; OPTIONAL OUTPUT PARAMETERS:
 ;	None.
 ; COMMON BLOCKS:
 ;	None.

Page 5 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; SIDE EFFECTS:
 ;	None.
 ; RESTRICTIONS:
 ;	None.
 ; PROCEDURE:
 ;	Straightforward. Using DEFAULT and TYPE from MIDL.
 ; MODIFICATION HISTORY:
 ;	Created 15-JUL-1991 by Mati Meron.
 ;-

 if Type(str1) ne 7 or Type(str2) ne 7 then begin
 	if keyword_set(wn) then message, 'Not a string!', /continue
 	return, 0b
 endif

 dlen = Default(len,0)
 if dlen eq 0 then dlen = max([strlen(str1),strlen(str2)])
 if not keyword_set(cas) then begin
 	dum1 = strupcase(str1)
 	dum2 = strupcase(str2)
 endif else begin
 	dum1 = str1
 	dum2 = str2
 endelse

 return, strmid(dum1,0,dlen) eq strmid(dum2,0,dlen)
 end

 *** STRMATCH ***

 Function StrMatch, str, list, len, caseon = cas, all = all

 ;+
 ; NAME:
 ;	STRMATCH
 ; PURPOSE:
 ;	Compares the string STR with the strings in the array LIST. Comparison
 ;	is done for the first LEN characters, or all of them if LEN is 0. If a
 ;	 match is found, STR is replaced by the full string from the list (or
 ;	if the keyword /ALL is set, by an array containing all the matching
 ;	strings).
 ; CATEGORY:
 ;	String Processing
 ; CALLING SEQUENCE:
 ;	Result = STRMATCH(STR, LIST [, LEN] [, keywords])
 ; INPUTS:

Page 6 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ; STR
 ;	Character string.
 ; LIST
 ;	Character array.
 ; OPTIONAL INPUT PARAMETERS:
 ; LEN
 ;	The number of characters to compare. Default is full comparison.
 ; KEYWORD PARAMETERS:
 ; /CASEON
 ;	Switch. If set the comparison is case sensitive. Default is ignore case.
 ; /ALL
 ;	Switch. If set, returns the indices of all the matching elements.
 ; OUTPUTS:
 ;	Returns the index of the first match, or -1l if no match is found.
 ;	Optionally (see keyword ALL above) returns all the matching indices.
 ; OPTIONAL OUTPUT PARAMETERS:
 ;	None.
 ; COMMON BLOCKS:
 ;	None.
 ; SIDE EFFECTS:
 ;	None other then the substitution in STR.
 ; RESTRICTIONS:
 ;	None.
 ; PROCEDURE:
 ;	Uses the function STREQ from MIDL.
 ; MODIFICATION HISTORY:
 ;	Created 15-JUL-1991 by Mati Meron.
 ;	Modified 20-NOV-1993 by Mati Meron. Added keyword ALL.
 ;-

 match = where(Streq(str,list,len,caseon = cas), nmatch)
 if not keyword_set(all) then match = match(0)
 if nmatch gt 0 then str = list(match)

 return, match
 end

 *** STRPARSE ***

 Function StrParse, line, delim, list

 ;+
 ; NAME:
 ;	STRPARSE
 ; PURPOSE:
 ;	Parses the string LINE using the characters in DELIM as delimiters.

Page 7 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;	Puts individual pieces into consecutive locations in LIST.
 ; CATEGORY:
 ;	String Processing
 ; CALLING SEQUENCE:
 ;	Result = STRPARSE(LINE, DELIM [, LIST])
 ; INPUTS:
 ; LINE
 ;	Character string.
 ; DELIM
 ;	Character string. Each Character of DELIM is used as a delimiter.
 ; OPTIONAL INPUT PARAMETERS:
 ;	None.
 ; KEYWORD PARAMETERS:
 ;	None.
 ; OUTPUTS:
 ;	Returns the number of pieces found minus one i.e. the index of the last
 ;	element of LIST if LIST is provided. If LINE is a null string or not a
 ;	string, the function returns -1l.
 ; OPTIONAL OUTPUT PARAMETERS:
 ; LIST
 ;	Character array. If name is provided, the pieces of LINE resulting
 ;	from the parsing process are returned in consecutive locations in LIST.
 ; COMMON BLOCKS:
 ;	None.
 ; SIDE EFFECTS:
 ;	None.
 ; RESTRICTIONS:
 ;	None.
 ; PROCEDURE:
 ;	Straightforward. Using the function TYPE from MIDL.
 ; MODIFICATION HISTORY:
 ;	Created 15-JUL-1991 by Mati Meron.
 ;-

 if Type(line) ne 7 then return, -1l
 index = -1l
 list = ''
 len = strlen(line)
 for i = 0l, len - 1 do begin
 	if strpos(delim,strmid(line,i,1)) ne -1 then index = [index,i]
 endfor
 index = [index,len]
 for i = 0l, n_elements(index) - 2 do begin
 	list = [list,strmid(line,index(i) + 1,index(i+1) - index(i) -1)]
 endfor
 inlist = where(list ne '',items)
 if items ne 0 then list = list(inlist) else list = list([0])

Page 8 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 return, long(items - 1)
 end

 *** TYPE ***

 Function Type, x

 ;+
 ; NAME:
 ;	TYPE
 ; PURPOSE:
 ;	Finds the type class of a variable.
 ; CATEGORY:
 ;	Programming.
 ; CALLING SEQUENCE:
 ;	Result = TYPE(X)
 ; INPUTS:
 ; X
 ;	Arbitrary, doesn't even need to be defined.
 ; OPTIONAL INPUT PARAMETERS:
 ;	None.
 ; KEYWORD PARAMETERS:
 ;	None.
 ; OUTPUTS:
 ;	Returns the type of X as a long integer, in the (0,9) range.
 ; OPTIONAL OUTPUT PARAMETERS:
 ;	None.
 ; COMMON BLOCKS:
 ;	None.
 ; SIDE EFFECTS:
 ;	None.
 ; RESTRICTIONS:
 ;	None.
 ; PROCEDURE:
 ;	Extracts information from the SIZE function.
 ; MODIFICATION HISTORY:
 ;	Created 15-JUL-1991 by Mati Meron.
 ;-

 dum = size(x)
 return, dum(dum(0) + 1)
 end

 __ ______________

Page 9 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Mati Meron			| "When you argue with a fool,
meron@cars.uchicago.edu		| chances are he is doing just the same"

Subject: Re: quick testing of string variables
Posted by David Foster on Wed, 24 Apr 1996 07:00:00 GMT
View Forum Message <> Reply to Message

moninger@fsl.noaa.gov (Bill Moninger) wrote:
>
> I have an array called station_name, dimensioned (6,n). Each item is a
> string 6 characters long. I would like to quickly test station_name
> against a particular string variable, find_this_station, another string of
> dimension 6.
>

I don't quite get from your message the dimensions of your
second string variable. Is it of LENGTH 6?

When you need to compare a STRARR(N) against a single string (or more
generally any array against a scalar) use the WHERE function:

	indices = WHERE(station_name eq find_this_station)

Read the online help on the WHERE() function...it's extremely useful.

Also useful are UNIQ(), TOTAL(), SORT(), REFORM(), REVERSE()
and SHIFT().

Dave Foster
foster@bial1.ucsd.edu

Subject: Re: quick testing of string variables
Posted by steinhh on Wed, 24 Apr 1996 07:00:00 GMT
View Forum Message <> Reply to Message

In article <moninger-2304960900010001@zirkle.fsl.noaa.gov>, moninger@fsl.noaa.gov (Bill
Moninger) writes:
|>
|> I have an array called station_name, dimensioned (6,n). Each item is a
|> string 6 characters long. I would like to quickly test station_name
|> against a particular string variable, find_this_station, another string of
|> dimension 6.
|>
|> Is there any way to do this without using loops?
|>

Page 10 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1324
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6113#msg_6113
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6113
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6118#msg_6118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

|> If I have to use loops, does anyone have a tip on the fastest way to do so?
|>
|> Is there are better way to configure the array station_name to make such
|> tests (against a particular station name) faster?
|>

It depends a little on what you mean my "testing A against B".
If it means, (as your variable names cleverly point to)
that you want to find out which entry - if any - in station_name
equals the value of find_this_station, then there's hope (I think).
For clarity assume that the strings have length "len", and station_name
has dimension (n1,n2). len, n1 and n2 should be LONGs for safety.

byt = byte(station_name) ; Should be a byte array, dimension (len,n1,n2)

str = string(reform(byt,len*n1*n2,/overwrite)) ; Make a looong string.

pos = strpos(str,find_this_station)

; Of course, if pos eq -1 then nothing was found.
; But if station (0,0) is "AB" and station (1,0) is "AC", they
; will end up in str as "ABAC....".
; If you are looking for station "BA" then you could be in trouble,
; but the "pos mod len ne 0" test discovers this.

if pos eq -1 then print,"No such station found" $
else begin
 ;; We'll have to be careful here:
 if pos mod len ne 0 then print,"Bummer -- wrong number - indecisive"
 x = (pos/len) mod n1
 y = (pos/len)/n1
end

;; You'll find your station in station_name(x,y)

The problem with AB + AC = ABAC can be fixed by adding a separator
character that's never used in the station names, e.g.:

byt = byte(station_name + '@') ;; (and len = len + 1 !!)

This is of course at the cost of one extra string array copying
operation. You might never need it given specific station names.

Regards,

Page 11 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Stein Vidar Hagfors Haugan

Subject: Re: quick testing of string variables
Posted by plugge on Wed, 24 Apr 1996 07:00:00 GMT
View Forum Message <> Reply to Message

In article <moninger-2304960900010001@zirkle.fsl.noaa.gov>, moninger@fsl.noaa.gov (Bill
Moninger) writes:
|>I have an array called station_name, dimensioned (6,n). Each item is a
|>string 6 characters long. I would like to quickly test station_name
|>against a particular string variable, find_this_station, another string of
|>dimension 6.
|>
|>Is there any way to do this without using loops?
|>
|>If I have to use loops, does anyone have a tip on the fastest way to do so?
|>
|>Is there are better way to configure the array station_name to make such
|>tests (against a particular station name) faster?
|>
|>I shall appreciate any help anyone can provide.
|>
|>-Bill Moninger
|>--
|>Bill Moninger, NOAA/Forecast Systems Laboratory.
|>home: 303-494-1709, work: 303-497-6435
|>

Bill,
you can simply do the logical test `eq' to the two arrays:

eql_array = station_name eq find_this_station

The result is an array eql_array containing 1 or 0 according to the comparison
of the corresponding elements of the two arrays.

 -- -------------
Michael Plugge _ Fachhochschule Mannheim
Institute for Statistics / \ Hochschule fuer Technik und Gestaltung
and Image Processing / \ Email: plugge@biv7.sr.fh-mannheim.de
Speyerer Str. 4 / \ Tel: 0621 2926208
68163 Mannheim / \ --o /\
Germany / -- - \<,- / \/\
 / \ (_)/ (_) / \/\
 -- -------------

Page 12 of 12 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1022
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4131&goto=6120#msg_6120
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6120
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

