Subject: Gradient Function Posted by jyoung on Mon, 20 May 1996 07:00:00 GMT

View Forum Message <> Reply to Message

I am new to IDL and I am looking for a function that might speed up a procedure I am working on. I have a two dimensional array that has some data points mostly low values, but in places it jumps rather quickly to high values. I want to put zeros at the constant places and ones at the quick changes.

It was suggested to me that I should try some kind of gradient function. I can probably create my own for IDL, but I wanted to know if there was any kind of function that might help in my efforts. I think the DERIV function might help, but maybe there is a more powerful function to examine these changes within the array.

Lastly what I have created causes a shift of the data by 1 element in the new array...any suggestions on how to fix this?

Jason Young **EPSCoR Research Assistant** W.V.I.T. Montgomery, WV 25136

phone: 304-442-1021

e-mail: jyoung@olie.wvitcoe.wvnet.edu

Subject: Re: Gradient Function Posted by ralfu on Tue, 21 May 1996 07:00:00 GMT

View Forum Message <> Reply to Message

In article <19960520.114958.988283.NETNEWS@WVNVM.WVNET.EDU>, jyoung@olie.wvitcoe.wvnet.edu (Jason Young) writes:

- > I am new to IDL and I am looking for a function that might speed
- > up a procedure I am working on. I have a two dimensional array that has
- > some data points mostly low values, but in places it jumps rather quickly
- > to high values. I want to put zeros at the constant places and ones at
- > the quick changes.
- > It was suggested to me that I should try some kind of gradient
- > function. I can probably create my own for IDL, but I wanted to know if
- > there was any kind of function that might help in my efforts. I think the
- > DERIV function might help, but maybe there is a more powerful function to
- > examine these changes within the array.

I looked very low values in a 2D array and did this in the following way: first smoothing the array with SMOOTH, substracting this from the real data, then looking in the remaining array for sharp features with the edge detecting SOBEL filter. Then I go with a loop through

the resulting index array and locate the rectangular subarrays, which contain exactly one of the sharp minima I look for, this I get with MIN and WHERE.

Perhaps not the most elegant method, but it works for me.

Regards, Ralf

--

Ralf Utermann

Universitaet Augsburg (Germany), Institut fuer Physik
Memmingerstr.6 "Speaking for me and nobody else"
D-86135 Augsburg Phone: +49-821-598-3231

SMTP: Ralf.Utermann@Physik.Uni-Augsburg.DE Fax: -3222