
Subject: Memory Problems
Posted by J.D. Smith on Thu, 15 Aug 1996 07:00:00 GMT
View Forum Message <> Reply to Message

I am having memory problems when attempting to print a 2-d image to
postscript. The images display without problem under the X device (with
seemingly as many windows displaying as I could want), but when I
"set_plot,'PS'" and run the same display commands, I get a "Unable to
allocate array: Not enough memory" message. I am using IDL 4.0.1 on a
SPARC IPX. Any thoughts?

On another note, I was wondering if it is feasible to run a widget
application as a background application (e.g. with a forked idl to
support it). I have some widgets for which it would be useful to be
able to use the idl command line without having to quit the widget. It
is quite frustrating to quit and relaunch a large widget application
whenever I just need to perform a small side calculation.

Thanks,

JD

Subject: Re: memory problems
Posted by Rick Towler on Tue, 12 Mar 2002 17:32:28 GMT
View Forum Message <> Reply to Message

> Is this problem fixable?

Yes, with an upgrade to win2k or it's younger sibling XP. :0 NT4 will
probably give you better results too but I haven't had the pleasure of IDL
on NT4.

-Rick

Subject: Re: memory problems
Posted by JD Smith on Tue, 12 Mar 2002 19:14:58 GMT
View Forum Message <> Reply to Message

Dan Larson wrote:
>
> My question is probably more of a windows question than an
> IDL question. When I free memory with IDL, the memory
> doesn't seem to return to the operating system(WIN 98).
> In other words, over the course of an IDL session, the
> system resources slowly dwindle to nothing. Is this

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4583&goto=6765#msg_6765
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=6765
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2728
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4583&goto=29808#msg_29808
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29808
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4583&goto=29811#msg_29811
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29811
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> problem fixable?
>

Ahh yes, the age old memory question. This surprising behavior, believe
it or not, is a *feature*, not of IDL, but of your operating system.
Here's an enlightening explanation and defense of the behavior I
received from one of RSI's top software engineers last year.

JD

 ==
==================
 If I had a dollar for every time someone has blamed me for
malloc()s behavior, I'd be a wealthy guy. There are
some things to say about this:

 - IDL uses malloc/free, so the behavior of memory staying in
 the process versus being released to the OS is really not
 an IDL issue. Some do it, and others don't.
 - Malloc is not perfect, but no general memory allocator can be
 perfect. This is an NP complete problem, so one should be
 reasonable about their expectations.
 - In particular, the idea that IDL should do it's own memory
 management instead of relying on the system allocator is
 not well considered. People who think this have not really
 considered the theoretical intractability of the issue.
 - Malloc is the best choice on most systems, because it is the
 system default, and is therefore highly optimized and
debugged.
 Writing your own memory allocator is a fools errand
 (unless it's an assignment for a CS course). We've
experimented
 with using alternative allocators, and my professional opinion
 is that it's a losing game. This problem is as old as computer
 science, and if the malloc on your system is still not
perfect,
 perhaps that should tell you something?
 - Even if you write your own allocator, and avoid all the subtle
 memory corrupting bugs, and even if you do beat malloc's
 performance:
 - Your allocator will have terrible behavior under
 some circumstances that you have yet to understand.
 - If you think you've already handled the point above,
 you have yet to understand the true complexity of
 the problem.
 - You're still using malloc alot, because lots of things
 from the system that you are relying on use it.
 - Having more than one allocator in a process makes

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 everything worse. You always have malloc, even if you
 don't want it, so anything else is going to raise
 the complexity level.
 - The GNU/Linux malloc() tries to return memory to the OS, while
other
 mallocs don't. Whether this is good or not depends on your
 point of view --- it's not always a pure win.
 - Shrinking the process requires the memory allocator
 to work hard. This makes it slower than it would be
 otherwise. Maybe you don't care about speed? The GNU
 malloc() does a good job of balancing this, but it's
 far from perfect.
 - As Craig pointed out, if you have sufficient swap
 defined, it's really a non-issue. As cheap as disks
 are, there's little reason to be upset about this.
 Just increase the swap and get on with life.

My main points then:
 - General memory allocation is theoretically hard. It's
 unfair to expect IDL to be able to change this.
 - In general, IDL/malloc do a good job.
 - You have to have enough memory on the system to solve
 the problem you're trying to solve. With memory as cheap as
 it is, this is less painful than it used to be.
 - My experience is that the Solaris malloc() is different
 from the GNU (Linux) malloc(), but if you configure your
 machine well, it's also excellent. Understand your machine...
 ==
==================

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

