Subject: Re: Calling fortran under unix
Posted by dors on Wed, 02 Oct 1996 07:00:00 GMT

View Forum Message <> Reply to Message

You can also write your wrapper functions in FORTRAN if you are not

into C. | can write FORTRAN and C but when taking a piece of existing
FORTRAN code | find it much easier to stay in FORTRAN. And in this

case FORTRAN has all the power you need (DEC FORTRAN does anyway). |
politely disagree that writing in FORTRAN is a problem. Everyone has

their own favorite language. They aren't the real limitation, any

task can be done in any language, it is all a matter of efficiency.

Here are some test files for a very simple example, only passing

longs and strings. Many more complicated examples could be created,
but this should get the main point across. There is much

documentation in the IDL manuals on all of this for many

architectures. And | remember seeing some example files somewhere in
the idl source tree.:

IDL:
PRO pass

a = long(10)

b ="'l can pass strings!!'

c =long(9)

print, 'calling FORTRAN'

result = CALL_EXTERNAL ('simple.so’,'simple_',a,b,c,VALUE=[0,1,0])
print, '‘back in IDL'

print, 'result=", result

FORTRAN:
c Interface routine
function simple (argc, argv)
INTEGER*8 argc, argv(*)
INTEGER*4 templ
simple=sum (%VAL(argv(1)),%val(argv(2)),%val(argv(3)))
return
END

c desired function
function sum (a, b, c)
integer*4 sum
integer*4 a,c
character*20 b

print*, 'Executing FORTRAN'

Page 1 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=617
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4798&goto=7101#msg_7101
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=7101
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

print*, a

print*, b

print*, c

sum=a+c

print*, '‘Leaving FORTRAN'

return

end
Here are the statements | used to compile (I know | have some extra
libraries here but it is a compile statement | coppied from another
project and | don't feel like sorting through what is needed :*)) Also
| assume you can do the same with the f90 compiler but | haven't used
it yet.:

f77 -c -0 simple.o simple.for

Id -0 simple.so -shared simple.o -IUfor -Ifor -IFutil -Im -lots -Ic

Note 1: Make sure you think about the use of pass by value versus pass
by reference when it comes to strings.

Note 2: Make sure you know the pointer size on your machine, on my DEC
Alpha it is integer*8, if this is not true for your machine you will
get a segmentation fault unless you make the appropriate changes.

Note 3: IDL will not pass integer*8's as data, there is no internal
format for that, nor will it pass real*16's.

Good luck,
Eric
\
\ O,
\ V) /
\ ~ ~ ~ ~ ~ ~ ~
| Eric E. Dors \| Internet: eric.dors@unh.edu |

| 203 Van Allen Hall | |
| lowa City, IA 52242 | |

| "if free particles were truly free..." |
| "they wouldn't be represented by bras, <k| " |
| ---oh no, how did a physics joke make it in here? :) |

Page 2 of 4 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Calling fortran under unix
Posted by korpela on Wed, 02 Oct 1996 07:00:00 GMT

View Forum Message <> Reply to Message

In article <32523466.41C6@mod5.ag.rl.ac.uk>,

Simon Williams <williams@mod5.ag.rl.ac.uk> wrote:

> | gather that the CALL_EXTERNAL interface is rather different
> under Unix, and that | might have to write some sort of

> intermediate "wrapper" between the idl and the fortran.

>

> | would be very grateful if anyone could show me how to do

> it for a simple example:

>

> subroutine simple(a,b,c)
>

> integer a,b,c

>

> c=atb

>

> end

You'll have to write a C wrapper that calls your fortran subroutine.
Here's an example that may work on your above example.

[* here's the prototype for the fortran function */

void simple_(int *a, int *b, int *c);

int wrapper(int argc, void *argv[])

{

int *a, *b, *c;

/* check the number of arguments */
if (argc == 3) {

a=(int *)argv[0];

b=(int *)argv[1];

c=(int *)argv[2];

simple_(a,b,c);

return(0);
} else {

return(-1);

you'd hace to link the wrapper function and the fortran function into the

Page 3 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=397
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=4798&goto=7103#msg_7103
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=7103
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

same shared library. Under SunOs the commands would be...
% gcc -Wall -fpic -c wrapper.c

% f77 -PIC -c simple.f

% Id -0 simple.so -assert pure-text simple.o wrapper.o -IF77
Under your unix they may be different.

The call_external statement would be:

error_code=call_external('simple.so’,'wrapper',a,b,c)

The general rules for linking C and Fortran are

1) Most varieties of fortran append an underscore to function names.
The fortran function hello() becomes the C function hello_()

2) Fortran subroutine and function parameters are passed as pointers.
subroutine garbage(a,b,c) INTEGER*4 a, REAL b, INTEGER*2 c
becomes void garbage (long *a, float *b, short *c)

3) Watch your types! "integer" is not necessarily "int". In your fortran
code use integer*2 and integer*4 in the C code use short and long.
Use real and double precision in fortran. float and double in C.
None of the above is guaranteed to work, but it's a starting point.

4) Fortran arrays are passed as a pointer to the first element of the array
subroutine garbage(a,b,c) INTEGER*4 a(100), REAL B(100), INTEGER*2 c(100)
becomes void garbage (long *a, float *b, short *c)

5) To avoid all these problems, skip fortran and move straight to C.

Eric
Eric Korpela | An object at rest can never be
korpela@ssl.berkeley.edu | stopped.

Click here for more info.

Page 4 of 4 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

