
Subject: Re: are there any s/w eng tools for IDL
Posted by Tim Patterson on Mon, 24 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

Judith Bachman wrote:
>  
>  I'm fairly new to IDL programming.   I'm finding that IDL
>  does it's job well, but it doesn't help me or the rest of my team
>  do ours very well!
>  
>          As experienced C/C++ programmers we really miss a
>  compiler that can warn that we've messed up a calling sequence or
>  done something that's probably dumb as far as data typing goes.
>  We are finding that we're spending a lot of time doing "desk
>  checking" to catch things that a complier catches.  Does anyone
>  have a "lint" like program for IDL or are we going to have to
>  learn to be VERY careful when we code?  Does anyone have
>  recommended coding standards that might help.  We're using a
>  "Hungarian notation" derivative to help keep data typing under
>  control - that's been a help.
>  
>  Thanks in advance for any suggestions that folks might have.
>  Judith Bachman
>  Judith.Bachman@gsfc.nasa.gov

There's a useful IDL mode for emacs which is worth getting.

There's also the IDLTOOL (type 'idltool' at the unix shell prompt)
which is a very, very basic "debug" tool which is ok for
simple routines, but isn't anything to get too excited
over. Basically, it just has a GUI to the same functions
such as HELP and BREAKPOINT that you can use via the IDL shell.

Until RSI introduce type-checking and other such features,
all you can do is try and be as thorough as possible about
employing coding standards. It is very easy to run up a
few modules in IDL which is great for prototyping, but
can be a real nightmare for projects that are under more
rigorous control. Perhaps the OO stuff in IDL 5.0 will 
allow better software engineering prectices to be introduced.
Until then I find using structures to gather up like-objects
can be very useful, as it minimises the chances of mistyping
a variable name and introducing a new variable at run-time!

	Tim

Page 1 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1222
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8321#msg_8321
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8321
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Subject: Re: are there any s/w eng tools for IDL
Posted by Mirko Vukovic on Mon, 24 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

Judith Bachman wrote:
>  
>  I'm fairly new to IDL programming.   I'm finding that IDL
>  does it's job well, but it doesn't help me or the rest of my team
>  do ours very well!
>  
>          As experienced C/C++ programmers we really miss a
>  compiler that can warn that we've messed up a calling sequence or
>  done something that's probably dumb as far as data typing goes.
>  We are finding that we're spending a lot of time doing "desk
>  checking" to catch things that a complier catches.  Does anyone
>  have a "lint" like program for IDL or are we going to have to
>  learn to be VERY careful when we code?  Does anyone have
>  recommended coding standards that might help.  We're using a
>  "Hungarian notation" derivative to help keep data typing under
>  control - that's been a help.
>  
>  Thanks in advance for any suggestions that folks might have.
>  Judith Bachman
>  Judith.Bachman@gsfc.nasa.gov
The only thing I am aware of is the idl mode for emacs.  But it does not
do any syntax checking.
-- 
Mirko Vukovic, Ph.D   	3075 Hansen Way M/S K-109
Varian Associates	Palo Alto, CA, 94304
415/424-4969		mirko.vukovic@varian.grc.com

Subject: Re: are there any s/w eng tools for IDL
Posted by William Clodius on Tue, 25 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

Mitchell R Grunes wrote:
>  
>  <snip>
>  
>  What is hungarian notation?  Something like reverse-polish?

At one time some of the more publicized Microsoft programming efforts
relied on Hungarian notation to provide discipline to C coding, and the
publicity associated with this made it quite well known in some
circles, but this notation has never been uniformly adopted by
Microsoft.

Page 2 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1326
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8331#msg_8331
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8331
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1793
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8316#msg_8316
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8316
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


From the comp.lang.c FAQ 

http://phantom.iweb.net:80/docs/C/faq/q17.8.html

"Hungarian Notation is a naming convention, invented by Charles
Simonyi, which encodes things about a variable's type (and perhaps its
intended use) in its name. It is well-loved in some circles and roundly
castigated in others. Its chief advantage is that it makes a variable's
type or intended use obvious from its name; its chief disadvantage is
that type information is not necessarily a worthwhile thing to carry
around in the name of a variable."

Such a convention might require that all integers start with the
letters, i, j, k, m, n, all logical variables start with an l, all
pointers start with a p, all structures start with an s, etc.
 
In languages that perform implicit type changes such an naming
convention will let you know when such a type change is occuring.
Because type changes, such as from a LONG to an INTEGER, from DOUBLE to
FLOAT, can introduce errors, such a convention can help make such
changes explicit.

However if you want to change an implementation, from say an INTEGER to
a LONG, then you have to change the name everywhere. If you want to
make subtle distinctions, between an INTEGER and a LONG, between
scalars and arrays, etc. a large portion of the name is occupied by
unpronounceable gibberish. I am not a fan of the Hungarian notation.

>  
>  For the most part, type checking and even arguement checking simply
>  aren't an issue.
>  

I would disagree with this blank statement. I have been burned too many
times trying to maintain other's code that played too fast and loose
with dynamic typing. I would say however that it is not just dynamic
typing, but its interaction with some coding styles that is a problem.
There is a mistaken impression that reusing a name for multiple
purposes can result in a performance or space savings. As a result,
some programmers use names inappropriately to mean multiple things. It
is one thing to use the same name, say data, for byte data and the
floating point data that results after the appropriate calibration has
been applied, it is another to use the name, say array, arbitrarilly
within a set of code to represent any possible array.

Note that while I can accept using the same name for related
quantities, I would prefer however not to use the same name for
calibrated and uncalibrated data. My preferred style might be

Page 3 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


final_data = Calibrate( Temporary(raw_data), calibration_data)

if raw_data is not going to be used subsequently.

>  <snip>
>  
>  There are several software engineering issues that do arise:
>  
>  1.  As mentioned above, when you operate on arguements of a
>  function or procedure, you are also operating on the values in the
>  calling program.  C/C++ ordinarally make local copies of scalar
>  values.  This is one of the many ways in which IDL was designed to
>  be Fortran-like, not C-like.

Try to avoid changes in the types of arguments as it typically
represents a change in the meaning that is not obvious in the calling
code. Try to avoid modifying arguments to functions, as opposed to
procedures, as functions that modify their arguments is often
counterintuitive and can result in subtle errors.
 
>  
>  2.  Integer arithmetic overflows and underflows are not detected.
>  For example, 1024*1024 would yield 0 on most platforms, because
>  small integers are stored in 16 bits, and 16 bit arithmetic on
>  almost all modern computers is actually arithmetic modulo 2^16 (if
>  you think about it, that is even true of two's complement signed
>  integers).  That "defect" is also true of most C compilers, by the
>  way--in fact it is common C programming practice to take advantage
>  of that.  (Some Fortran compilers have a switch which lets them
>  detect that sort of error--a good advantage of Fortran :-).

Note also that by default IDL integers are 16 bit not 32 bit. This can
result in some subtle errors. It is good practice to make every integer
constant a long by appending an L, (and hence making the associated
varibale a long) unless you are certain that only 16 bits are
necessary.
>  
>  <snip>
>  
>  4.  Argument checking is mostly not a problem, since it mostly just
>  leads to run-time errors when you try to use them.  If your calling
>  program has more arguments than the called program, or includes
>  keyword arguments that the called program is missing, there will be
>  a run time error.  If the reverse is true, there will be no error.
>  However, the unspecified variables will be undefined--that is
>    n_elements(variable)
>  will be 0--see variable d earlier in this post.

Page 4 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Mostly but not always not a problem. I have been burned when say a
program  assumes that an argument is a long and say has
a = a + 1L
that converts an integer array to a long array and exceeds memory
limits, (very rare)

or an input that is a byte array where something like

a = a^2

causes an undetected overflow for BYTE arrays that would not occur for
a = LONG(TEMPORARY(a))^2

Note these and other errors are contest dependent, and are best
addressed by good documentation not naming conventions.

>  <snip>

-- 

William B. Clodius		Phone: (505)-665-9370
Los Alamos Nat. Lab., NIS-2     FAX: (505)-667-3815
PO Box 1663, MS-C323    	Group office: (505)-667-5776
Los Alamos, NM 87545            Email: wclodius@lanl.gov

Subject: Re: are there any s/w eng tools for IDL
Posted by grunes on Tue, 25 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

In article <3310AE2B.3EA2@erols.com> Judith Bachman <judychuk@erols.com> writes:
> ...As experienced C/C++ programmers we really miss a 
> compiler that can warn that we've messed up a calling sequence or 
> done something that's probably dumb as far as data typing goes.  
> We are finding that we're spending a lot of time doing "desk 
> checking" to catch things that a complier catches.  Does anyone 
> have a "lint" like program for IDL or are we going to have to 
> learn to be VERY careful when we code?  Does anyone have 
> recommended coding standards that might help.  

> We're using a 
> "Hungarian notation" derivative to help keep data typing under 
> control - that's been a help.

What is hungarian notation?  Something like reverse-polish?

For the most part, type checking and even arguement checking simply

Page 5 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=402
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8319#msg_8319
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8319
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


aren't an issue.

One must understand a bit the way most interpreters (like IDL
and PV-WAVE) work.

In C and C++, like most fully compiled languages, symbols are
fairly stable within any one program unit (#defines can make things
differ from one code line to the next, and pointers can point to
various locations, but a symbol always has the same basic meaning).
This is mostly a good thing, and is what makes such languages 1 or
2 orders of magnitude faster than interpreted languages, especially
in statements that don't handle large arrays.

In most interpreted languages, and certainly in IDL and PV-WAVE,
symbols are quite unstable.  One moment a symbol might be
undefined, the next it might be the name of a function, or a
variable, which might have any type (or even be a structure), and
any shape (number and size of dimensions).

By the way, some so-called compiled languages, like Forth, Lisp,
and, I am told, Smalltalk, actually lie in between true compiled
and interpreted languages, and simple interpretation can change.
Their execution speeds are therefore more akin to interpreters.
Even C/C++ allows array locations and the values pointed to by
pointers to change, unless otherwise specified, which eliminates a
fair amount of optimization that is possible in languages like
Fortran which were designed for speed.  (I hate C.  I know that C
has advantages, like pass-by-value, full-blown pointers that
can sometimes be useful, etc., but I still hate C.  It's those
darned semi-colons.  Therefore I pretend that Fortran is much better.)

For example, in IDL or PV-WAVE:

  function f(a,b,c,d=d)
                                 ; NOTE: the following operations have
                                 ; 'side effects'.  That is, IDL and
                                 ; PV-WAVE do not make local copies, so
                                 ; when you change the local variable,
                                 ; you are also changing the variable in
                                 ; the calling program.

  a=float(a)                     ; Make a is floating point.

  b=reform(b,n_elements(b))      ; Make b a one-dimensional array.

  c=c(0)                         ; If c is an array, make it a scalar,
                                 ; thereby dropping any additional
                                 ; elements.

Page 6 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


  if n_elements(d) then d=0      ; If d is undefined, or was not
                                 ; included, make it 0.

  ...

That function may change the type of a, the size and shape of b and
c, and the value, size, and shape of d.

For the most part, type checking simply isn't an issue in IDL and
PV-WAVE.  As in some compiled languages, mixed-type arithmetic is
both legal and reasonable.

There are several software engineering issues that do arise:

1.  As mentioned above, when you operate on arguements of a
function or procedure, you are also operating on the values in the
calling program.  C/C++ ordinarally make local copies of scalar
values.  This is one of the many ways in which IDL was designed to
be Fortran-like, not C-like.

2.  Integer arithmetic overflows and underflows are not detected.
For example, 1024*1024 would yield 0 on most platforms, because
small integers are stored in 16 bits, and 16 bit arithmetic on
almost all modern computers is actually arithmetic modulo 2^16 (if
you think about it, that is even true of two's complement signed
integers).  That "defect" is also true of most C compilers, by the
way--in fact it is common C programming practice to take advantage
of that.  (Some Fortran compilers have a switch which lets them
detect that sort of error--a good advantage of Fortran :-).

3.  Floating point overflows and underflows may or may not be
detected, and if they are detected, the error message does not
always give you correct information about where the error occurred.
Again, this is quite similar to C.  On IEEE floating point machines
(PC's, Sun Sparcs, SGIs...), such operations produce NANs (not a
number flag values).  However, if you convert a value or array of
values to integer, those NANs will be converted to a legal integer
value, causing potential confusion.  (Most Fortran compilers
have a switch for overflow checking, and some C/C++ compilers do.

4.  Argument checking is mostly not a problem, since it mostly just
leads to run-time errors when you try to use them.  If your calling
program has more arguments than the called program, or includes
keyword arguments that the called program is missing, there will be

Page 7 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


a run time error.  If the reverse is true, there will be no error.
However, the unspecified variables will be undefined--that is
  n_elements(variable)
will be 0--see variable d earlier in this post.

5.  Subscript checking is a problem.  If you use scalar subscripts,
like
  a(5,7)
you will get run-time errors if the subscripts are out of bounds.
However, if you use vector subscripts
  a([1,2,3],[1,5])
the subscripts are clipped to be within range.  (I'm not sure of
all the rules pertaining to when they are clipped, and when an
error occurs.  Look it up!)

Run time errors will occur if you use too many subscripts, but any
shape array (or even a scalar value) can always be subscripted in
a one-dimensional fashion.

By the way, although subscripts are 0-origin, like C, the storage
order is Fortran-style, NOT C-style--e.g., if a is two dimensional
  print,a(0:1)
or
  print,a(0),a(1)
does the same thing as
  print,a(0,0),a(1,0)

I do have a program (written in Fortran--sorry) which diagrams IDL
and PV-WAVE source code, and have similar programs which diagram
Fortran and C++.  I don't think this is what you wanted, but here
it is anyway:

-----------------------------CUT HERE-----------------------
c EXAMPLE OF OUTPUT (looks better if you choose IBM PC line graphics):

c     +--------- pro Sample,a,b,c                               |   1
c     |          a=indgen(15)^2                                 |   2
c     |+-------- if a eq b then begin                           |   3
c     ||           print,'A equals B'                           |   4
c     ||           c=0                                          |   5
c     |+-------- else begin                                     |   6
c     ||           print,'A does not equal B'                   |   7
c     ||           c=1                                          |   8
c     |+-------- endif                                          |   9
c     +--------- end                                            |  10

c Diagrams IDL and PV-Wave begin(or case)-end constructs, functions

Page 8 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


c  and procedures, places a * next to goto and return statements.
c
c Program by Mitchell R Grunes, ATSC/NRL (grunes@imsy1.nrl.navy.mil).
c Revision date: 8/25/96.
c If you find it useful, or find a problem, please send me e-mail.

c -----------------------------------------------------
c This program was written in FORTRAN, for historic reasons.
c This was written in Fortran 77 (with common extensions) for
c  portability.  It should also compile under Fortran 90 and Fortran 95,
c  provided you tell the compiler it is in card format.
 c----------------------------------------------------------- ----------

c I hope this works for you, but bear in mind that nothing short of
c  a full-fledged language parser could really do the job.  Perhaps
c  worth about what you paid for it.    (-:

c Versions: To diagram Fortran:     diagramf.for
c                      IDL/PV-WAVE: diagrami.for
c                      C:           diagramc.for
c MS-Dos procedures to call above programs without asking so many questions,
c  append output to file diagram.out:
c                      Fortran:     diagramf.bat (card format)
c                                   diagram9.bat (free format)
c                      IDL/PV-WAVE: diagrami.bat
c                      C:           diagramc.bat
c Similar Unix csh procedures:
c                      Fortran:     diagramf.sh  (card format)
c                                   diagram9.sh  (free format)
c                      IDL/PV-WAVE: diagrami.sh
c                      C:           diagramc.sh
c Similar Vax VMS DCL procedures:
c                      Fortran:     diagramf.vax (card format)
c                                   diagram9.vax (free format)
c                      IDL/PV-WAVE: diagrami.vax
c                      C:           diagramc.vax

        program diagrami                        ! Diagrammer for IDL and
                                                !  PV-WAVE
        character*80 filnam,filnam2

        print*,'IDL source filename?'
        read(*,'(a80)')filnam
        print*,filnam

        print*,'Output file (blank=screen)?'
        read(*,'(a80)')filnam2
        print*,filnam2

Page 9 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


        print*,'Column in which to write line #''s ',
     &   '(67 for 80 col screen, 0 for none):'
        read*,LCol
        print*,LCol

        print*,'Use IBM PC graphics characters (0=no):'
        read*,iGraphics
        print*,iGraphics

        call diagram(filnam,filnam2,LCol,iGraphics)
        end
 c----------------------------------------------------------- ------------
        subroutine diagram(filnam,filnam2,LCol,iGraphics)
c Program by Mitchell R Grunes, ATSC/NRL (grunes@imsy1.nrl.navy.mil).
        character*80 filnam,filnam2
        character*160 a,b
        character*5 form
        character*8 fm
        character*1 c
        logical find
        external find
        common icol,icol1
        logical fout

c Symbols which will mark block actions:
        character*1 BlockBegin    (2) /'+','+'/  ! Start of block
        character*1 BlockEnd      (2) /'+','+'/  ! End of block
        character*1 BlockElse     (2) /'+','+'/  ! Else construct
        character*1 BlockContinue (2) /'|','|'/  ! Block continues w/o change
        character*1 BlockHoriz    (2) /'-','-'/  ! Horizontal to start of line
c Same, but allows horizontal line to continue through:
        character*1 BlockBeginH   (2) /'+','+'/  ! Start of block
        character*1 BlockEndH     (2) /'+','+'/  ! End of block
        character*1 BlockElseH    (2) /'+','+'/  ! Else construct

        if(iGraphics.ne.0)then
          iGraphics=1

          BlockBegin   (1)=char(218)            ! (1)=normal
          BlockEnd     (1)=char(192)
          BlockElse    (1)=char(195)
          BlockContinue(1)=char(179)
          BlockHoriz   (1)=char(196)
          BlockBeginH  (1)=char(194)
          BlockEndH    (1)=char(193)
          BlockElseH   (1)=char(197)

Page 10 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


          BlockBegin   (2)=char(214)            ! (2)=DO/FOR loops (doubled)
          BlockEnd     (2)=char(211)            ! (not yet used)
          BlockEnd     (2)=char(211)
          BlockElse    (2)=char(199)
          BlockContinue(2)=char(186)
          BlockHoriz   (2)=char(196)
          BlockBeginH  (2)=char(209)
          BlockEndH    (2)=char(208)
          BlockElseH   (2)=char(215)
        endif

        open(1,file=filnam,status='old')
        fout=filnam2.gt.' '
        if(fout)open(2,file=filnam2,status='unknown')

                                                ! ASCII 12 is a form feed
        if(fout)write(2,*)char(12),
     &   '=============--',filnam(1:LenA(filnam)),'--============='

        if(fout)     write(2,'(11x,a50,a49,/)')  ! Write column header
     &   '....,....1....,....2....,....3....,....4....,....5',
     &   '....,....6....,....7....,....8....,....9....,....'
        if(.not.fout)write(*,'(11x,a50,a49,/)')' ',
     &   '....,....1....,....2....,....3....,....4....,....5',
     &   '....,....6....,....7....,....8....,....9....,....'

        i1=0                                    ! # nest levels before
                                                !  current line
        i2=0                                    ! # nest levels on
                                                !  current line
        i3=0                                    ! # of nest levels after
                                                !  current line
        i4=0                                    ! not 0 to flag start or end
                                                !  of block
        InSub=0                                 ! Inside a subroutine or
                                                !  function?
        nMain=0                                 ! no mainline program yet
        InCase=0                                ! not inside case
        iContinue=0                             ! not continued from prior line
        nline=0
10      a=' '
        read(1,'(a160)',end=99)a
        nline=nline+1
        fm=' '
        write(fm,'(i5)')nline
        form=fm

        if(a(1:1).eq.char(12))then

Page 11 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


          if(fout)write(2,'(a1,:)')char(12)
          if(.not.fout)print*,'------------FORM FEED------------'
          b=a(2:160)
          a=b
        endif

        b=' '                                   ! Turn tabs to spaces
        j=1
        do i=1,LenA(a)
          if(a(i:i).eq.char(9))then
            j=(j-1)/8*8+8+1
          elseif(j.le.160)then
            b(j:j)=a(i:i)
            j=j+1
          endif
        enddo
        i=1
        j=1
        a=' '                                   ! Pre-processing
        iquote=0                                ! no ' yet
        idquote=0                               ! no " yet
        j=1
        do i=1,LenA(b)
          c=b(i:i)
          if(c.ge.'A'.and.c.le.'Z')c=char(ichar(c)+32)
          if(c.eq.';')goto 15                   ! comment
          if(c.eq.'@'.and.i.eq.1)goto 15        ! other procedure includes
          if(c.eq.''''.and.idquote.eq.0)then
            iquote=1-iquote
            c=' '
          endif
          if(c.eq.'"' .and.iquote .eq.0)idquote=1-idquote
          if(iquote.ne.0.or.idquote.ne.0)c=' '
          if(j.gt.1)then                        ! (kill multiple spaces)
            if(c.eq.' '.and.a(j-1:j-1).eq.' ')j=j-1
          endif
          if(c.eq.':')then                      ! (put space after :)
            if(j.le.160) a(j:j)=':'
            j=j+1
            c=' '
          endif
          if(j.le.160) a(j:j)=c
          j=j+1
        enddo

15      i2=i1
        i3=i1
        i4=0

Page 12 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


        igoto=0                                 ! no goto on line

        if(a.ne.' '.and.InSub.eq.0..and..not.
     &   (find(a,'function ',2).or.find(a,'pro ',2)))then       ! mainline
          InSub=InSub+1
          nMain=nMain+1
          if(fout)print*,'Line ',form,' ',b(1:LenA(b))
          if(nMain.gt.1)then
            PRINT*,'***ERROR--TOO MANY MAINLINES***'
            if(fout)WRITE(2,*)'***ERROR--TOO MANY MAINLINES!***'
            if(fout)print*,b
            print*,char(7)
          endif
          i2=i2+1
          i3=i3+1
        endif

        if(find(a,'goto',8+32).or.find(a,'return',1+128))igoto=1

        if(find(a,'endif ',2).or.find(a,'endfor ',2)
     &  .or.find(a,'endelse ',2).or.find(a,'endwhile ',2)
     &  .or.find(a,'endcase ',2).or.find(a,'endrep ',2))then
          i3=i3-1
          if(find(a,'begin  ',1))i3=i3+1
          i4=max(i4,1)
          if(i3.lt.InCase)InCase=0
        elseif(find(a,'case ',1).or.find(a,'begin  ',1))then
          InCase=i1
          i2=i2+1
          i3=i3+1
          i4=max(i4,1)
          if(find(a,': begin  ',0))i4=max(i4,2)
          if(find(a,'end ',1))i3=i3-1
        elseif(find(a,'end ',2))then
          if(i3.gt.0.or.Insub.gt.0)then         ! Problem: IDL end may
            i3=i3-1                             !  actually be an endif,
                                                !  endelse, etc.
            if(i3.eq.0.and.InSub.ne.0)InSub=0
          endif
          if(i3.lt.InCase)InCase=0
        elseif(find(a,'function ',2).or.find(a,'pro ',2))then
          if(fout)print*,'Line ',form,' ',b(1:LenA(b))
          InSub=InSub+1
          i2=i2+1
          i3=i3+1
          if(InSub.ne.1.or.i3.ne.1)then
            PRINT*,'***ERROR--INVALID DIAGRAMMING INDEX line',form
            if(fout)

Page 13 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


     &       WRITE(2,*)'***ERROR--INVALID DIAGRAMMING INDEX!***'
            if(fout)print*,b
            print*,char(7)
            i3=1
            InSub=1
          endif
        elseif((find(a,':  ',0).or.find(a,':',256)).and.
     &   InCase.ne.0)then                       ! simple case instances
          i4=max(i4,1)
        elseif((find(a,':',0).and.InCase.ne.0))then      !other case instances
          ileft=0
          iright=0
          ileft2=0
          iright2=0
          do i=1,icol1
            if(a(i:i).eq.'(')ileft=ileft+1
            if(a(i:i).eq.')')iright=iright+1
            if(a(i:i).eq.'[')ileft2=ileft+1
            if(a(i:i).eq.']')iright2=iright+1
          enddo
           if(ileft.eq.iright.and.ileft2.eq.iright2.and.icontinue.eq.0)
     &     i4=max(i4,1)
        endif

        icontinue=0
        if(find(a,'$  ',0))icontinue=1

        a=' '

        if(i1.lt.0.or.i2.lt.0.or.i3.lt.0.or.i4.lt.0)then
          PRINT*,'***ERROR--INVALID DIAGRAMMING INDEX line',form
          if(fout)WRITE(2,*)'***ERROR--INVALID DIAGRAMMING INDEX!***'
          if(fout)print*,b
          print*,char(7)
          i1=max(i1,0)
          i2=max(i2,0)
          i3=max(i3,0)
          i4=max(i4,0)
        endif

        i2=max(i1,i3)                           ! # of nests on current line
        i4=max(i4,iabs(i3-i1))                  ! not 0, to flag start or
                                                !  end of block

        iBlock=1                                ! For the present version.

        a=' '                                   ! Leave space for diagram
        a(12:160)=b                             !  (must match column header)

Page 14 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


        LastUse=1                               ! Last usable diagram col
        dowhile(LastUse.lt.160.and.a(LastUse:LastUse).eq.' ')
          LastUse=LastUse+1
        enddo
        LastUse=LastUse-2

        if(igoto.ne.0)a(1:1)='*'                ! Place * next to jumps

        if(i2.gt.0)then                         ! Draw one vertical line per
          do i=2,min(i2+1,LastUse)              !  nest level.
            a(i:i)=BlockContinue(iBlock)
          enddo
        endif

        if(i4.ne.0)then                         ! Draw horizontal lines inward
          do i=i2+2,LastUse                     !  from above.
            a(i:i)=BlockHoriz(iBlock)
          enddo
        endif

        do i=0,i4-1                             ! May need to replace some
                                                !  vertical lines with
          c=              BlockElse(iBlock)     !       else  symbol
          if(i1+i.lt.i3)c=BlockBegin(iBlock)    !  or   begin symbol
          if(i1+i.gt.i3)c=BlockEnd   (iBlock)   !  or   end   symbol
          j=max(2,min(LastUse,i2+1-i))
          a(j:j)=c
          if(a(j+1:j+1).eq.BlockElse  (iBlock)) ! Continue horizontal lines
     &       a(j+1:j+1)  = BlockElseH (iBlock)
          if(a(j+1:j+1).eq.BlockBegin (iBlock))
     &       a(j+1:j+1)  = BlockBeginH(iBlock)
          if(a(j+1:j+1).eq.BlockEnd   (iBlock))
     &       a(j+1:j+1)  = BlockEndH  (iBlock)
        enddo

        if(LCol.gt.0.and.a(max(1,LCol+11):160).eq.' ')then       ! line #
          if(form(1:1).eq.' ')form(1:1)=BlockContinue(iBlock)
          a(LCol+11:160)=form
        endif

        n=LenA(a)                               ! Output diagrammed line
        if(fout)     write(2,'(80a1,80a1)')(a(i:i),i=1,n)
        if(.not.fout)write(*,'(1x,80a1,80a1)')(a(i:i),i=1,n)

        i1=i3
        goto 10
99      if(i3.gt.0.or.InSub.ne.0)then

Page 15 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


          PRINT*,'***WARNING--SOME NEST LEVELS LEFT HANGING AT END***'
          if(fout)print*,b
          print*,char(7)
        endif
        end
 c----------------------------------------------------------- ------------
        logical function find(a,b,icond)        ! find b in a, subject to
                                                !  conditions:
                                                ! icond=sum of the following:
                                                ! 1:  Prior, if exists, must
                                                !     be blank
                                                ! 2:  Must be first non-blank
                                                ! 4:  Prior character, if
                                                !     present, must not be
                                                !     alphanumeric.
                                                ! 8:  Prior character, if
                                                !     present, must be blank
                                                !     or )
                                                ! 16: Prior character, if
                                                !     present, must be blank
                                                !     or ,
                                                ! 32: Next character not
                                                !     alphanumeric
                                                ! 64: Next character not
                                                !     alphabetic
                                                ! 128:Next character must be
                                                !     blank or (
                                                ! 256:1st non-blank, possibly
                                                !     except for numeric
                                                !     labels
c Program by Mitchell R Grunes, ATSC/NRL (grunes@imsy1.nrl.navy.mil).
c Revision date: 8/25/96.
        character*(*) a,b
        character*1   c,cNext,c2
        common icol,icol1
        logical result

        ii=len(a)
        jj=len(b)
        result=.false.
        do i=1,ii-jj+1
          if(a(i:i+jj-1).eq.b)then
            icol1=i                             ! icol1=column of item found
            icol =i+jj                          ! icol =colomn after item
                                                !  found
            c=' '
            cNext=' '
            if(icol1.gt.1)c=a(icol1-1:icol1-1)

Page 16 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


            if(icol .le.ii)cNext=a(icol:icol)

            result=.true.
            if(result.and.iand(icond,1).ne.0.and.icol1.gt.1)then
              result=c.eq.' '
            endif

            if(result.and.iand(icond,2).ne.0.and.icol1.gt.1)then
              result=a(1:icol1-1).eq.' '
            endif

            if(result.and.iand(icond,4).ne.0)
     &       result=(c.lt.'0'.or.c.gt.'9').and.(c.lt.'a'.or.c.gt.'z')

            if(result.and.iand(icond,8).ne.0)result=c.eq.' '.or.c.eq.')'

            if(result.and.iand(icond,16).ne.0)result=
     &       c.eq.' '.or.c.eq.','

            if(result.and.iand(icond,32).ne.0)
     &       result=(cNext.lt.'0'.or.cNext.gt.'9').and.
     &              (cNext.lt.'a'.or.cNext.gt.'z')

            if(result.and.iand(icond,64).ne.0)
     &       result=(cNext.lt.'a'.or.cNext.gt.'z')

            if(result.and.iand(icond,128).ne.0)
     &       result=cNext.eq.' '.or.cNext.eq.'('

            if(result.and.iand(icond,256).ne.0.and.icol1.gt.1)then
              ii=1
              do iii=1,icol1-1
                c2=a(iii:iii)
                if(c2.ge.'0'.and.c2.le.'9')ii=iii+1
                if(c2.ne.' '.and.(c2.lt.'0'.or.c2.gt.'9'))goto 20
              enddo
20            if(ii.lt.icol1)then
                result=a(ii:icol1-1).eq.' '
              endif
            endif

            find=result
            if(result)return
          endif
        enddo
        find=result
        return
        end

Page 17 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


 c----------------------------------------------------------- ------------
        function LenA(a)                        ! Length of string, at
                                                !  least 1
c Program by Mitchell R Grunes, ATSC/NRL (grunes@imsy1.nrl.navy.mil).
c Revision date: 8/25/96.
        character*(*) a
        n=len(a)
        dowhile(n.gt.1.and.a(n:n).eq.' ')
          n=n-1
        enddo
        LenA=n
        end
-----------------------------CUT HERE-----------------------
 ------------------------------------------------------------ --------
Mitchell R Grunes, grunes@imsy1.nrl.navy.mil.  Opinions are mine alone.

Subject: Re: are there any s/w eng tools for IDL
Posted by Mirko Vukovic on Wed, 26 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

R. Bauer wrote:
>  
>  Judith Bachman wrote:
>> 
>>  I'm fairly new to IDL programming.   I'm finding that IDL
>>  does it's job well, but it doesn't help me or the rest of my team
>>  do ours very well!
>> 
>>          As experienced C/C++ programmers we really miss a
>>  compiler that can warn that we've messed up a calling sequence or
>>  done something that's probably dumb as far as data typing goes.
>>  We are finding that we're spending a lot of time doing "desk
>>  checking" to catch things that a complier catches.  Does anyone
>>  have a "lint" like program for IDL or are we going to have to
>>  learn to be VERY careful when we code?  Does anyone have
>>  recommended coding standards that might help.  We're using a
>>  "Hungarian notation" derivative to help keep data typing under
>>  control - that's been a help.
>> 
>>  Thanks in advance for any suggestions that folks might have.
>>  Judith Bachman
>>  Judith.Bachman@gsfc.nasa.gov
>  
>  I programmed a lot of my idl source code on several different platforms.
>  I think unfortunality the best kind of editor or debugger I found was on
>  idl 4.01 for windows.
>  I really don't understand why such features as idl for windows have are

Page 18 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1326
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8307#msg_8307
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8307
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  not possible for unix.
>  
>  --
>  R.Bauer
>  
>  Institut fuer Stratosphaerische Chemie (ICG-1)
>  Forschungszentrum Juelich
>  email: R.Bauer@kfa-juelich.de
best? I thought that it sucked and was buggy.  But then, I never read
the manual :-)  I edit in emacs. (which is not half as good for language
sensitive editing as DEC's LSE)
-- 
Mirko Vukovic, Ph.D   	3075 Hansen Way M/S K-109
Varian Associates	Palo Alto, CA, 94304
415/424-4969		mirko.vukovic@varian.grc.com

Subject: Re: are there any s/w eng tools for IDL
Posted by R. Bauer on Wed, 26 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

Judith Bachman wrote:
>  
>  I'm fairly new to IDL programming.   I'm finding that IDL
>  does it's job well, but it doesn't help me or the rest of my team
>  do ours very well!
>  
>          As experienced C/C++ programmers we really miss a
>  compiler that can warn that we've messed up a calling sequence or
>  done something that's probably dumb as far as data typing goes.
>  We are finding that we're spending a lot of time doing "desk
>  checking" to catch things that a complier catches.  Does anyone
>  have a "lint" like program for IDL or are we going to have to
>  learn to be VERY careful when we code?  Does anyone have
>  recommended coding standards that might help.  We're using a
>  "Hungarian notation" derivative to help keep data typing under
>  control - that's been a help.
>  
>  Thanks in advance for any suggestions that folks might have.
>  Judith Bachman
>  Judith.Bachman@gsfc.nasa.gov

I programmed a lot of my idl source code on several different platforms.
I think unfortunality the best kind of editor or debugger I found was on
idl 4.01 for windows.
I really don't understand why such features as idl for windows have are
not possible for unix. 

Page 19 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1802
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8308#msg_8308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8308
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


-- 
R.Bauer 

Institut fuer Stratosphaerische Chemie (ICG-1)
Forschungszentrum Juelich
email: R.Bauer@kfa-juelich.de

Subject: Re: are there any s/w eng tools for IDL
Posted by davidf on Wed, 26 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

R. Bauer writes:

>  I programmed a lot of my idl source code on several different platforms.
>  I think unfortunality the best kind of editor or debugger I found was on
>  idl 4.01 for windows.
>  I really don't understand why such features as idl for windows have are
>  not possible for unix. 

Coming in IDL 5.0, I hear. Anyone received their official 5.0 betas yet?

David

-----------------------------------------------------------
David Fanning, Ph.D.              
Fanning Software Consulting
2642 Bradbury Court, Fort Collins, CO 80521
Phone: 970-221-0438   Fax: 970-221-4762   
E-Mail: davidf@dfanning.com   
Coyote's Guide to IDL Programming: http://www.dfanning.com
-----------------------------------------------------------

Subject: Re: are there any s/w eng tools for IDL
Posted by William Clodius on Wed, 26 Feb 1997 08:00:00 GMT
View Forum Message <> Reply to Message

Judith Bachman wrote:
>  
>  <snip>
>          As experienced C/C++ programmers we really miss a
>  compiler that can warn that we've messed up a calling sequence or
>  done something that's probably dumb as far as data typing goes.

1. Rely extensively on KEYWORDS for procedures and functions with more

Page 20 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8309#msg_8309
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8309
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1793
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5522&goto=8310#msg_8310
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=8310
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


than one or two arguments. Avoid using optional arguments as it is easy
to have off by one errors. By relying on keywords you should avoid
messing up the calling sequence.

2. Keywords add significant flexibility that can result in spaghetti
code within the called procedure. For those keywords that can influence
the control of flow of a procedure, I often find it useful to create an
additional procedure that checks consistency of keywords, defines
defaults, and sets one or two integer values so that the main control of
flow can be described in terms of a single case construct that utilizes
the integer values. This procedure should not access keywords that are
passed on unchanged to other procedures.

3. The CASE construct is in general clearer, more flexible, and less
error prone than the switch construct of C/C++, use it more often than
you would C/C++'s switch.

>  We are finding that we're spending a lot of time doing "desk
>  checking" to catch things that a complier catches.  Does anyone
>  have a "lint" like program for IDL or are we going to have to
>  learn to be VERY careful when we code?  Does anyone have
>  recommended coding standards that might help.  We're using a
>  "Hungarian notation" derivative to help keep data typing under
>  control - that's been a help.

Try to rely on a functional rather than an imperative style, i.e.,
define an entity in one small section of code and do not change its
meaning afterwards. It is tempting to reuse a name to mean more than one
thing in an attempt to save space or processing time. However, any
potential change in the type of an object, implicitly requires a check
on the types of the results, allocating the new object and deallocating
the old, and it is not clear to me that any of these actions are avoided
by name reuse. However, these implicit checks can be made more explicit,
providing runtime error checking, by specifying the shape of the entity
on the left hand side of the object

i.e. if A is a two dimensional array

A = function_name(...) generates a new object A

A(*,*) = function_name(...) may generate a new object A, but tells the
interpreter that you want the result to be consistent with the current
definition of A. The interpreter will check to ensure that the new
object is two dimensional, consistent in extent and type with the
definition of A before the assignment. Note consistency in type may mean
that assigning a FLOAT to a BYTE is reported as an error, but assigning
a BYTE to an integer results in an implicit conversion that is not
reported as an error. There are variants of this where you assign to

Page 21 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


subsections of A, etc.

>  
>  Thanks in advance for any suggestions that folks might have.
>  Judith Bachman
>  Judith.Bachman@gsfc.nasa.gov

-- 

William B. Clodius		Phone: (505)-665-9370
Los Alamos Nat. Lab., NIS-2     FAX: (505)-667-3815
PO Box 1663, MS-C323    	Group office: (505)-667-5776
Los Alamos, NM 87545            Email: wclodius@lanl.gov

Page 22 of 22 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

