Subject: operating on 3-D arrays Posted by John Keck on Fri, 07 Mar 1997 08:00:00 GMT

View Forum Message <> Reply to Message

The IDL manual encourages avoiding FOR...NEXT loops by using the vaunted matrix capabilities of IDL, so I have been trying to handle three-dimensional arrays with these facilities.

I need to multiply three vectors to produce a three-dimensional array. One would think that it would suffice to use the matrix multiplication operator (#) as one does with a pair of vectors to get a two-dimensional array. However with three vectors, IDL gives the error message

% Operands of matrix multiply have incompatible dimensions...

Anyone have a simple way to manipulate three (and higher) dimensional arrays in IDL?

Thanks,

>

>

John Keck

Subject: Re: operating on 3-d arrays Posted by thompson on Mon, 10 Mar 1997 08:00:00 GMT View Forum Message <> Reply to Message

John Keck <jwk@phys.columbia.edu> writes:

- > The IDL manual encourages avoiding FOR...NEXT loops by using the vaunted
- > matrix capabilities of IDL, so I have been trying to handle
- > three-dimensional arrays.

- > I need to multiply three vectors to produce a three-dimensional array.
- > One would think that it would suffice to use the matrix multiplication
- > operator (#) as one does with a pair of vectors to get a two-dimensional
- > array. However with three vectors, IDL gives the error message
- % Operands of matrix multiply have incompatible dimensions... >
- > Anyone have a simple way to manipulate three (and higher) dimensional
- > arrays in IDL?

This might do what you want. Suppose you had three vectors, called A, B, and C that you wanted to multiply together such that the result R had the property

$$R(i,j,k) = A(i) * B(j) * C(k)$$

You could then use the following commands:

R = A # B

R = R(*) # C

R = REFORM(R, N_ELEMENTS(A), N_ELEMENTS(B), N_ELEMENTS(C))

Bill Thompson