
Subject: Re: How Object-oriented?
Posted by davidf on Thu, 22 May 1997 07:00:00 GMT
View Forum Message <> Reply to Message

David Ritscher <david.ritscher@zibmt.uni-ulm.de> writes:

>  Is anyone ready yet to comment on how object- oriented IDL 5.0 is?

I am *not* an expert on OOP. My only qualification here is that
reticence is not usually associated with my name. Please keep that
in mind. 

And my remarks are going to be colored by the fact that
I was up until the wee hours of the morning trying to do the very
simplest thing in IDL 5.0: display a surface with some axes on it. 
I have spent the better part of three days on this, so far without
success, so I am feeling peevish about OOP just this moment. So
please keep that in mind.

And finally, to give RSI every benefit of the doubt, I am still working
with the beta version of the software, which everyone expects to
be buggy. So *please* keep that in mind. :-)

>  OO has become a big buzz word, so it has become important to at least
>  give lip service to this concept.   Can anyone comment on IDL 5.0?  
>  Is it more on the lip-service level, or are the changes significant 
>  enough that one can write real OO software?

I believe that RSI's commitment to OOP is more than lip service.
The pointer implementation is just outstanding and I like very 
much the way they have implemented objects. I think the object
structures are straightforward. I like the way they can be
automatically initialized. I especially appreciate the almost
complete flexibility you have in writing methods for your objects.
And the elegance and simplicity of the Data Miner object 
implementation may be the best thing RSI has ever done
with respect to building easy-to-use software.

I think, in short, that yes, the changes are significant enough
that you will be able to begin to write real OO software.
You only have to work with objects for a few minutes to start
getting all kinds of ideas for powerful programs that could
be written with them. I think, eventually, that objects will have
as big an impact on IDL programs as widgets did when they
were first introduced.

But I can remember when widgets were first introduced and
how frustrated I got at times. The documentation was sketchy

Page 1 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5957&goto=9033#msg_9033
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9033
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


at best, often wrong or misleading. The software was buggy.
Things changed from one version of IDL to another, usually 
without warning, etc. (To give RSI credit, they usually 
changed for the better. I just sometimes didn't want to hear
it after I had spent many days modifying my programs to work
around some bug.)

I am in that frustrated mode right now after trying to
write what I consider to be the very simplest graphics displays
with the new object graphics routines. How in the world can
something touted to be the very latest in programming innovation
be so infernally hard to program!

I want to do to two simple things: (1) Display a surface with
axes, and (2) Change the size of the axes labeling to something
other than the grotesquely large default size. (I was actually
embarrassed for RSI when I first saw the plots that came
up in the Insight demo on my Windows NT machine.)

I expected to have to do more low-level programming with 
the object graphics system, especially with the first
release of the software. But I did not expect to have to
do so much low-level programming without adequate
documentation. Last night I was reduced to the kind of
programming I hate: making almost random changes in
my programs in the futile hope that I might see a pattern
in the results that gave me a clue as to what in the world
was going on.

Just to give an example. I cannot figure out how to put
axes on my surface so that it looks like a normal surface
plot. (Yes, I know there are examples. I've run them. They
work fine when the data is DIST(40), but they don't work
at all if I try to display *real* data!) There is a LOCATION
keyword in the Axis object that would seems to be what
I need. Here is the explanation of that keyword:

   "Set this keyword to a two- or three-element vector of the 
    form [x, y] or [x, y, z] to specify the coordinate through which 
    the axis should pass. The default is [0, 0, 0]."

"The coordinate through which the axis should pass!?" What
can this possibly mean? I can imagine an X axis having to
pass through a point in the YZ plane, but beyond this I am
stumped. And in any case, two hours worth of plugging all
kinds of values into this keyword led to no insights. (A pun.)

And although I can now change the size of an axis title,

Page 2 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


I have still discovered no way to change the size of the
axes annotation, beyond specifying each individual 
annotation separately, which cannot possibly be what 
RSI has in mind.

So, bottom line? I think RSI is moving in the right direction
with their OOP ideas. I think eventually it will revolutionize
the way IDL programs are written. But the current implementation
of object graphics (in my beta version, please remember) is
*not* ready for prime time.

Let's just say I'm glad I'm not an RSI technical support
engineer right now!

Cheers,

David

----------------------------------------------------------
David Fanning, Ph.D.              
Fanning Software Consulting
Customizable IDL Programming Courses
Phone: 970-221-0438  E-Mail: davidf@dfanning.com   
Coyote's Guide to IDL Programming: http://www.dfanning.com

Subject: Re: How Object-oriented?
Posted by davidf on Fri, 23 May 1997 07:00:00 GMT
View Forum Message <> Reply to Message

Stein Vidar Hagfors Haugan <s.v.h.haugan@astro.uio.no> writes
in a thoughtful article:

>  Unlike David Fanning, however, I'm not completely happy with the 
>  pointer implementation - as far as I have understood it, you
>  have no "address of" operator. I.e., you cannot *mix*
>  normal and pointer variables in the sense that you cannot
>  make a pointer variable point to a normal variable like you
>  can in e.g., C, and thus change (or read) the contents of that 
>  variable by using the pointer. 

A little experimenting convinces me that Stein is right 
about this, but I am nevertheless still pleased with the
implementation. What if RSI *had* made it possible to
point to normal variables? I can imagine all hell breaking
loose within IDL as variables were willy-nilly redefined
and pointers were now pointing everywhere or nowhere.
I presume the cost of the software, as high as it is, would

Page 3 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5957&goto=9018#msg_9018
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9018
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


skyrocket, just to pay for the additional technical
support engineers RSI would have to hire to sort it out.

I think they absolutely did the best, sensible thing to
make pointers that point at heap variables, which are
global in scope and with can be reached with easily copied
and passed-around variables.
 
>  This increases the amount of work that needs to be done to 
>  make existing programs benefit from pointers in conjunction 
>  with *new* programs. Let's say you would like to make a huge 
>  dataset used in an existing program available to a new 
>  routine (or preferably, an object). It would be nice to be 
>  able to pass the object a *pointer* only to this data, to 
>  avoid copying the data, and allowing the object to keep the 
>  pointer for future reference. This seems to be impossible 
>  (though I may have misunderstood the documentation..). 

Well, I'm no great fan of the documenation, but in this case
I think you read it correctly.

>  Instead, you'd have to rewrite (parts of) the existing program 
>  to use pointers instead of normal variables - though I 
>  presume routines being passed a variable by reference wouldn't 
>  care if the call was e.g.,
>  
>     my_routine,*var_ptr    instead of    my_routine,var

I think in some instances you will probably have to re-write
your programs to use pointer dereferences, but you are right 
about the syntax above. It doesn't matter.

>  I guess that the reason for the lack of an address operator
>  is that "normal" variables are allocated on the stack, 
>  whereas pointer variables are allocated from "heap" memory...
>  I.e., some nontrivial part of the information on a "normal" 
>  variable is kept on the stack - not just the addres of where 
>  that information is.. This would of course make it dangerous 
>  to make a pointer to a stack variable, since e.g., the pointer 
>  could be stored in a common block and then accessed after the 
>  stack variable had been deallocated (and the space possibly 
>  allocated to something completely else!). Or maybe it's just 
>  the lack of reference counting that does it - local variables 
>  are automatically deallocated (irrespective of where the actual 
>  variable is stored) on returns....

I think you hit the nail on the head. It would be exceedingly
dangerous to give real address operators out. IDL would have

Page 4 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


to be completely redesigned to accommodate it. (And you
and I will be retired before that version is released anyway.)
 
>  Actually, one may write object oriented programs in almost
>  any language - certainly you can write OO programs in IDL 4,
>  compound widgets being the obvious example of object orientation,
>  though with handles etc other possibilities are clearly present.
>  Over the last 2-3 years (much to my surprise and amusement) I've 
>  been "rediscovering" OO programming in IDL after ceasing to use 
>  Simula several years earlier.

I wa surprised to find out--once I looked into what 
object-oriented programming was all about--that I had been
teaching many of the fundamental concepts in my widget
programming courses for several years. "Whoa", I thought
to myself, "This is easy enough that even *I* can figure
it out." :-) 

Alas, I'm still bogging down on surfaces with axes, but
now I have a real version to play with. :-)

>  David's (temporary, I'm sure!) frustration about the 
>  object-oriented graphics comes as no surprise at all - just
>  think about the time we've all spent getting "up to speed"
>  with all of the "direct" graphics stuf, and writing our
>  own favourite procedures to do this and that exactly the way
>  we want. Without having any hands-on experience of OO graphics 
>  in IDL 5.0, I imagine it's almost like throwing away most of that 
>  experience and all those neat solutions all at once, and having 
>  to get up to speed once more in an unfamiliar, if not hostile 
>  terrain! 

"Hostile terrain". I like that. ;-)

I appreciate the vote of confidence, Stein. Yes, I think I will
figure it out sooner or later. They say people pay you for your
experience. No better way to get a lot of experience, I guess,
than to be willing to make a lot of stupid mistakes. I'll
struggle on. But if you run across any information about axes,
I would love to hear it. :-)

Cheers!

David

----------------------------------------------------------
David Fanning, Ph.D.              
Fanning Software Consulting

Page 5 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Customizable IDL Programming Courses
Phone: 970-221-0438  E-Mail: davidf@dfanning.com   
Coyote's Guide to IDL Programming: http://www.dfanning.com

Subject: Re: How Object-oriented?
Posted by Stein Vidar Hagfors H on Fri, 23 May 1997 07:00:00 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
>  
>  David Ritscher <david.ritscher@zibmt.uni-ulm.de> writes:
>  
>>  Is anyone ready yet to comment on how object- oriented IDL 5.0 is?
>  
[..disclaimers from David Fanning snipped..]
>  
>>  OO has become a big buzz word, so it has become important to at least
>>  give lip service to this concept.   Can anyone comment on IDL 5.0?
>>  Is it more on the lip-service level, or are the changes significant
>>  enough that one can write real OO software?
>  

I'm not an expert on OOP either, but coming from a university 
that uses Simula as the introductory language in Computer
Science, I feel qualified to comment even though I have only 
looked at the *documentation* for the OOP extensions of IDL 5.0.

(BTW - "Simula does it with CLASS" - invented around 1967(!) and
definitely a *huge* influence on the design of almost any
existing OO language - it has almost all of the features of 
most "modern" OO languages, except operator overloading and 
multiple inheritance)

Reading the documentation on the OOP stuff itself in IDL 5.0 
doesn't take long - it's just a very few pages describing the
*very* basic ideas of OOP and the syntax used to implement 
those ideas.

To anwer your question in short: The changes are *very* significant,
all you need to write a completely object oriented program
with an object oriented syntax is there - it's significant enough 
that you could call it a "different" language altogether (OODL ?:-) 
if it werent't for the fact that IDL 4.0 programs can still be run.

David Fanning:
>  The pointer implementation is just outstanding ... 

Page 6 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2040
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=5957&goto=9023#msg_9023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=9023
http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Unlike David Fanning, however, I'm not completely happy with the 
pointer implementation - as far as I have understood it, you
have no "address of" operator. I.e., you cannot *mix*
normal and pointer variables in the sense that you cannot
make a pointer variable point to a normal variable like you
can in e.g., C, and thus change (or read) the contents of that 
variable by using the pointer. 

This increases the amount of work that needs to be done to 
make existing programs benefit from pointers in conjunction 
with *new* programs. Let's say you would like to make a huge 
dataset used in an existing program available to a new 
routine (or preferably, an object). It would be nice to be 
able to pass the object a *pointer* only to this data, to 
avoid copying the data, and allowing the object to keep the 
pointer for future reference. This seems to be impossible 
(though I may have misunderstood the documentation..). 
Instead, you'd have to rewrite (parts of) the existing program 
to use pointers in stead of normal variables - though I 
presume routines being passed a variable by reference wouldn't 
care if the call was e.g.,

   my_routine,*var_ptr    instead of    my_routine,var

I guess that the reason for the lack of an address operator
is that "normal" variables are allocated on the stack, 
whereas pointer variables are allocated from "heap" memory...
I.e., some nontrivial part of the information on a "normal" 
variable is kept on the stack - not just the addres of where 
that information is.. This would of course make it dangerous 
to make a pointer to a stack variable, since e.g., the pointer 
could be stored in a common block and then accessed after the 
stack variable had been deallocated (and the space possibly 
allocated to something completely else!). Or maybe it's just 
the lack of reference counting that does it - local variables 
are automatically deallocated (irrespective of where the actual 
variable is stored) on returns....

Anyway - I'll live with it...it is a big improvement in
notation over handles.

But back to the longer story on object orientation:

David F.:
>  I think, in short, that yes, the changes are significant enough
>  that you will be able to begin to write real OO software.
>  You only have to work with objects for a few minutes to start
>  getting all kinds of ideas for powerful programs that could

Page 7 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


>  be written with them. I think, eventually, that objects will have
>  as big an impact on IDL programs as widgets did when they
>  were first introduced.

Actually, one may write object oriented programs in almost
any language - certainly you can write OO programs in IDL 4,
compound widgets being the obvious example of object orientation,
though with handles etc other possibilities are clearly present.
Over the last 2-3 years (much to my surprise and amusement) I've 
been "rediscovering" OO programming in IDL after ceasing to use 
Simula several years earlier.

One good (textbook) example of a simple object that is not
just a compound widget is a queue. No - don't think of it as a
variable with elements - think of it (visualize it) as an 
independent entity. Your program is over here on the left 
side doing it's thing (like receiving and processing requests),
but requests are coming in too fast to handle. Well, you
create this "box" or "machine" or "object" or "thing"
or
whatever over there on the right side: that is a queue.
You can stuff "things" into it, and you can retrieve them.
That's all. So your "main" program could do something like

  requests = obj_new('queue')  ;; Make sure we do have a queue
  
  WHILE NOT finished DO BEGIN
     req = read_request()  ;; Read
     
     WHILE req NE no_request DO BEGIN ;;
        requests->insert,req  ;; Put into the queue
        req = read_request()  ;; Read in next request
     END 
     
     ;; Process one request at a time before checking the
     ;; input again
     next = requests->next()  ;; 
     IF next NE no_request THEN process_request(next)
  END
  
Now, object orientation is mostly a matter of how you choose
to organize your thoughts when dealing with a problem. You can 
do this in IDL 4.0 with handles instead, with a slightly 
different packaging.

  requests = mk_queue() ;; Make sure we do have a queue
  
  WHILE NOT finished DO BEGIN

Page 8 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


     req = read_request()  ;; Read
     
     WHILE req NE no_request DO BEGIN ;;
        queue_insert,requests,req  ;; Put into the queue
        req = read_request()  ;; Read in next request
     END 
     
     ;; Process one request at a time before checking the
     ;; input again
     next = queue_next(requests)  ;; 
     IF next NE no_request THEN process_request(next)
  END

Of course, having an "object orientated language" makes the 
way ahead so much simpler. For example, each request could
be objects (of varying type) with a "priority" function
associated with them - the priority could depend on e.g.,
the time since the request was made (not necessarily a 
*linear* dependence!) etc. etc., and the queue object
could be written to automatically take this into account
each time a request->next() function was called etc..

Also, processing the requests may be done by a 
"processor" object/machine, which maintains it's 
own internal state, i.e., use

  machine = obj_new('processor')

  :
  :
      IF next NE no_request THEN machine->process,next

Now comes the fun of object orientation, with or without
syntax geared specifically towards it:

Let's say you want to find out the difference of ignoring
a certain type of events:

   machine1 = obj_new('processor','Machine 1')
   machine2 = obj_new('processor','Machine 2')

   :
   :
       IF next NE no_request THEN BEGIN
           machine1->process,next                      ;; Always
           IF next->good() then machine2->process,next ;; Sometimes
       END

Page 9 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php


Imagine the program output (let's say, printed out by
the machine->process procedure):

IDL> test_processes
Machine 2 Exploded - further messages stopped
Machine 1 Stopped - further messages stopped

On object oriented graphics:

David's (temporary, I'm sure!) frustration about the 
object-oriented graphics comes as no surprise at all - just
think about the time we've all spent getting "up to speed"
with all of the "direct" graphics stuf, and writing our
own favourite procedures to do this and that exactly the way
we want. Without having any hands-on experience of OO graphics 
in IDL 5.0, I imagine it's almost like throwing away most of that 
experience and all those neat solutions all at once, and having 
to get up to speed once more in an unfamiliar, if not hostile 
terrain! It takes some time to reinvent the wheel, i.e., to get a 
good understanding of how things work, and then reframing your 
favourite tools as objects instead of procedures..

Regards,

Stein Vidar

Page 10 of 10 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

