
Subject: Re: Recursion in IDL
Posted by alans on Mon, 05 Apr 1993 17:24:25 GMT
View Forum Message <> Reply to Message

Recursion only works on procedures, though. It would be far more useful
for IDL to support recursive *functions*. Unfortunately, this is more
difficult for IDL's parser, I guess, because it has to distinguish between a
function call and an array subscript operation which share the same syntax.
E.G.,

function foo, bar
 if (bar eq 1) then $
 return, 1 else $
 return, bar * foo (bar-1)
end

IDL> print,foo(2)
% Variable is undefined: FOO.
% Execution halted at FOO </dev/tty(1)> .
% Called from FOO </dev/tty(2)>.
% Called from $MAIN$.

 Yecch! Does anyone know a way around this? Compile it twice? (Yes,
actually I just tried and it *does* work if you ".run" it twice. (*WOW*) So
I take it all back; IDL *does* support recursive functions, albeit with an
ugly hack. For the record, I'm running IDL 3.0.0 on Sparc SunOs 4.1.1...

 RSI, I understand the difficulty involved, but can something be done about
that? I never explicitly ".run" anything; I put all procedures & functions
in my IDL path, and have encouraged my colleagues to do the same...Gee,
think of the CPU-hogging Object-Oriented possibilities with this - functions
which walk structures of structures looking for a particular field names,
recursive "sizeof"-type operations, etc. It boggles the imagination! ;-)
--
Alan J.Stein MIT/Lincoln Laboratory alans@ll.mit.edu

Subject: Re: Recursion in IDL
Posted by thompson on Tue, 06 Apr 1993 13:39:40 GMT
View Forum Message <> Reply to Message

alans@ll.mit.edu (Alan Jay Stein) writes:

> Recursion only works on procedures, though. It would be far more useful
> for IDL to support recursive *functions*. Unfortunately, this is more
> difficult for IDL's parser, I guess, because it has to distinguish between a
> function call and an array subscript operation which share the same syntax.
> E.G.,

Page 1 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=79
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=644&goto=877#msg_877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=35
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=644&goto=873#msg_873
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=873
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> function foo, bar
> if (bar eq 1) then $
> return, 1 else $
> return, bar * foo (bar-1)
> end

> IDL> print,foo(2)
> % Variable is undefined: FOO.
> % Execution halted at FOO </dev/tty(1)> .
> % Called from FOO </dev/tty(2)>.
> % Called from $MAIN$.

> Yecch! Does anyone know a way around this? Compile it twice? (Yes,
> actually I just tried and it *does* work if you ".run" it twice. (*WOW*) So
> I take it all back; IDL *does* support recursive functions, albeit with an
> ugly hack. For the record, I'm running IDL 3.0.0 on Sparc SunOs 4.1.1...

> RSI, I understand the difficulty involved, but can something be done about
> that? I never explicitly ".run" anything; I put all procedures & functions
> in my IDL path, and have encouraged my colleagues to do the same...Gee,
> think of the CPU-hogging Object-Oriented possibilities with this - functions
> which walk structures of structures looking for a particular field names,
> recursive "sizeof"-type operations, etc. It boggles the imagination! ;-)
> --
> Alan J.Stein MIT/Lincoln Laboratory alans@ll.mit.edu

Actually, I can't make your example fail. If I enter "print,foo(2)" then I get
the answer "2". I'm using IDL v3.0.0 on SunOS 4.1.2.

Sometimes I've found that IDL can get confused about whether something's a
variable or a function when it tries to compile a routine and fails. Then an
extra .run seems to solve the problem.

In any case, what you might try is to put a dummy keyword in your function
definition. Then the IDL shouldn't have any problems determining that it's a
function and not a variable. For example

	function foo, bar, recursive=recursive
	 if (bar eq 1) then $
	 return, 1 else $
	 return, bar * foo (bar-1,/recursive)
	end

The recursive keyword above doesn't actually do anything, but it makes it
obvious that foo is a function.

Page 2 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Bill Thompson

Subject: Re: Recursion in IDL
Posted by zawodny on Tue, 06 Apr 1993 16:08:01 GMT
View Forum Message <> Reply to Message

In article <sterner.733762629@warper.jhuapl.edu> sterner@warper.jhuapl.edu (Ray Sterner)
writes:
> One of the least used features of IDL may be recursion. But it's
> there and works very well.
>
> ...
>
> Ray Sterner sterner@tesla.jhuapl.edu

 I agree and wish to post a routine that draws "directory trees" and
demonstrates recursion. This routine SPAWNs a lot of child processes and
may not be the best way to do this, but it does work.

(there will be a .sig file at the end as well)

pro TREE,curdir,maxlevel=maxlevel,file=file $
	,level=level,flag=flag,tab=tab,stat=stat
;+
; NAME:		TREE
;	
; PURPOSE:	Draws a subdirectory tree on UNIX systems
;	
; CATEGORY:	Stuff that noone ever bothers to write
;	
; CALLING SEQUENCE:
;		TREE [,dname,maxlevel=n,file=fname]
;	
; INPUTS:	All inputs are optional
;	CURDIR		String variable containing the name of the directory
;			at the root of the tree. (Defaults to '~')
; KEYWORDS:
;	MAXLEVEL	Integer indicating the number of levels of
;			subdirectories to display. (Default is to search to
;			a depth of 10 {this is done to avoid infinite loops})
;			Existance of subdirectories beyond MAXLEVEL are
;			indicated by '-->>'.
;
;	FILE		String variable specifying the output file name.
;			Special case use of /FILE causes output to go to a file
;			named 'tree.out'. (Default is to output to the screen)
;

Page 3 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=170
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=644&goto=871#msg_871
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=871
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; ****	Other Keywords are used to pass data recursively and are, therefore,
;	for internal use only and should NOT be utilized by the user.
;
; OUTPUTS:
;	May output to either the screen or a file.
;	
; COMMON BLOCKS:	None
;
; SIDE EFFECTS:		None
;	
; RESTRICTIONS:
;			Written to run on UNIX systems
;
;			WARNING! Some patches to operating systems (eg. SUN)
;			have been found to generate infinite loops. Do not
;			make MAXLEVEL large unnecessarily.
;
;			Really deep searches (MAXLEVEL large) may trash the
;			display when line wrapping is enabled.
;	
; PROCEDURE:
;	STRAIGHTFORWARD (seems to be the default value of this field).
;
; MODIFICATION HISTORY:
;	Written 2/5/93 by J. M. Zawodny, NASA Langley Research Center.
;	zawodny@arbd0.larc.nasa.gov
;-

; Somethings are only done at the top level
	if (n_elements(level) eq 0) then begin

	; Set default values
		if(n_elements(curdir) le 0) then curdir = '~'
		if not keyword_set(maxlevel) then maxlevel = 10
		level = 0

	; Get the starting directory
		spawn,'cd '+curdir,list
		tab = ' '

	; Do we write this to a file
		if keyword_set(file) then begin
		; Get variable type of file
			s = size(file)
		; Is file a string?
			if(s(1) eq 7) then fname=file else fname='tree.out'
			openw,lun,fname,/get_lun
			flag = lun

Page 4 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

			printf,flag,list
		endif else begin
			flag = 0
			print,list
		endelse
	endif

; Find out what is in the directory
	spawn,'ls -1 -F '+curdir+' | grep "/"',list
	if(list(0) eq '') then begin
		stat = 0
		return
	endif

; Are we beyond desired depth
	if(level ge maxlevel) then begin
		if keyword_set(flag) then printf,flag,tab+'|-->>' $
			 else print,tab+'|-->>'
		stat = -1
		return
	endif

; For all subdirectories in this directory
	len = n_elements(list)-1
	for k=0,len do begin
		name = list(k)
		name = strmid(name,0,strpos(name,'/'))
	; Output a line
		if (k ne len) then tb = tab+'| ' else tb = tab+' '
		v = tab+'|-----'+name
		if keyword_set(flag) then printf,flag,v else print,v

	; Recurse through all subdirectory levels
		tree,curdir+'/'+name,level=(level+1),maxlevel=maxlevel, $
			flag=flag,tab=tb,stat=stat

		if(k ne len) and stat then begin
			tb = tab+'|'
			if keyword_set(flag) then printf,flag,tb $
				else print,tb
		endif

	endfor
	stat = 1

	if keyword_set(file) then begin
		close,lun
		free_lun,lun

Page 5 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

	endif
return
end

--
 Joseph M. Zawodny (KO4LW) NASA Langley Research Center
 Internet: zawodny@arbd0.larc.nasa.gov MS-475, Hampton VA, 23681-0001
 Packet: ko4lw@wb0tax.va.usa

Page 6 of 6 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

