Subject: Re: retain and graphics_level=2
Posted by Stein Vidar Hagfors H on Wed, 29 Oct 1997 08:00:00 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

[on calling the Draw method for an object graphics
window in response to expose events]

> Like everything else, it depends. On my non-OpenGL-
> accelerated machines I find it noticeably slower, but

> not unbearably slow for most object graphics programs.
> |t obviously depends on how complicated the graphics
> scene is to render.

This is where | don't follow - if the graphics object is
not changed it shouldn't have to be rendered over again.

Another issue is that some programs may decide to render
the graphics scene, then do changes to the graphics object
as the result of a *series* of events, waiting for a

push on a "Render" button to show the effects. If the
window is hidden/exposed in the intermediate state, then
the automatic call to the Draw method would erroneously
display the changes straight away.... Ok, | agree the
example is somewhat far-fetched, but still.

> | have learned, by the way, that speeding up object
> graphics is a high priority for the folks at RSI in
> their next release of IDL.

| would much rather that they (first, at least) focus on making
sure that widgets that worked under 4.0.1 will work under 5.X
(e.g., the "multiple UPDATE on/off" problem that masks out
the contents of scrollable sub-bases).

Stein Vidar

Subject: Re: retain and graphics_level=2
Posted by Stein Vidar Hagfors H on Wed, 29 Oct 1997 08:00:00 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

[.snip.]

> The fact is, object graphics windows do not have to have

Page 1 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2040
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6744&goto=10194#msg_10194
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10194
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2040
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6744&goto=10195#msg_10195
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10195
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

a pixmap around to "buffer" the window's contents. The
object graphics themselves *are* the buffer! In fact you
might say that the whole point of object graphics is that
they are persistent and that the object "scene" can be

reproduced at any time (albeit slowly sometimes).
NNNNNNNNNNNNNNNNNNNNNNN

VVVVYV

And this is a bit worrying. Let me say that | have very little
experience (yet) with object graphics, but | don't understand
why one is forced (implicitly) to use a slow method to

refresh windows that have been overlaid by another window.

> | have gotten into the habit of setting Retain=0 and
> Expose=1 on any window | create for object graphics
> output. On any expose event | simply call the Draw
> method on the Window. Simple. Easy. And it works
> every time.

But how slow is it, really?

Regards,

Stein Vidar

Subject: Re: retain and graphics_level=2
Posted by davidf on Wed, 29 Oct 1997 08:00:00 GMT

View Forum Message <> Reply to Message

R. Bauer (r.bauer@fz-juelich.de) writes:

> Sometimes, it has no effect if | use retain=2 in a draw_widget for
> object_graphics.

>

> What's are the reasons?

The IDL documentation states that the use of Retain=2 in

draw widgets used for object graphics is "strongly discouraged".
This might lead you to believe it's just a bad idea. In fact,

I've found that it is a disastrous idea on most of the platforms
I've used object graphics on. On my WindowsNT machine, for
example, use of Retain=2 with any resizeable graphics window
makes all of the axes labeling disappear on the resized plot!

The fact is, object graphics windows do not have to have
a pixmap around to "buffer" the window's contents. The
object graphics themselves *are* the buffer! In fact you
might say that the whole point of object graphics is that
they are persistent and that the object "scene" can be

Page 2 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6744&goto=10196#msg_10196
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10196
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

reproduced at any time (albeit slowly sometimes).

| have gotten into the habit of setting Retain=0 and
Expose=1 on any window | create for object graphics
output. On any expose event | simply call the Draw
method on the Window. Simple. Easy. And it works
every time.

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

E-Mail: davidf@dfanning.com

Phone: 970-221-0438

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: retain and graphics_level=2
Posted by davidf on Wed, 29 Oct 1997 08:00:00 GMT

View Forum Message <> Reply to Message

Stein Vidar Hagfors Haugan (s.v.h.haugan@astro.uio.no) writes
in follow-up to this discussion:

>> Like everything else, it depends. On my non-OpenGL-
>> accelerated machines | find it noticeably slower, but

>> not unbearably slow for most object graphics programs.
>> |t obviously depends on how complicated the graphics
>> scene is to render.

>

> This is where | don't follow - if the graphics object is

> *not* changed it shouldn't have to be rendered over again.

\Y

| think you are confusing the word "create" or "change"
with "render". Graphic objects, it is true, do not have

to be re-created each time they are used. And they can
be changed at will. But in order to see changes in
effect, the scene must be re-rendered or displayed in
the window. This is usually done by invoking the Draw
method on the Window object. Graphics windows must
be re-rendered when part of the window needs to be
repaired. (The technical term for this is "backing
store".) A window must be repaired, for example, if

it is uncovered by moving a window that was in front

of it.

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6744&goto=10198#msg_10198
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10198
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

In direct graphics either the window manager (Retain=1)
or IDL (Retain=2) keeps a pixmap of the window to
effect this kind of window repair. This is absolutely
necessary in direct graphics because once a direct
graphics command is issued there is absolutely no
record of it. In other words, the window doesn't
"know" anything about what is in it. But in object
graphics, the window can in some sense be said to
"know" about its contents. Thus, if a window object
needs to be repaired, it makes sense for the object
to repair itself. To have IDL do it (which, as | say,
doesn't work) or to have the window system do it
(which it can't do on my PC) would be overkill.

Another issue is that some programs may decide to render
the graphics scene, then do changes to the graphics object
as the result of a *series* of events, waiting for a

push on a "Render" button to show the effects. If the
window is hidden/exposed in the intermediate state, then
the automatic call to the Draw method would erroneously
display the changes straight away.... Ok, | agree the
example is somewhat far-fetched, but still.

VVVVYVYVYVYV

Well, just turn off Expose events on the Draw widget
while you fidget about. :-)

>> | have learned, by the way, that speeding up object
>> graphics is a high priority for the folks at RSI in

>> their next release of IDL.

>
> | would much rather that they (first, at least) focus on making
> sure that widgets that worked under 4.0.1 will work under 5.X
> (e.g., the "multiple UPDATE on/off" problem that masks out
> the contents of scrollable sub-bases).

Yes, well, perhaps getting widgets to work properly is their
highest priority. | hope so, too.

Cheers,

David

David Fanning, Ph.D.
Fanning Software Consulting
E-Mail: davidf@dfanning.com
Phone: 970-221-0438

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: retain and graphics_level=2
Posted by Stein Vidar Hagfors H on Wed, 29 Oct 1997 08:00:00 GMT

View Forum Message <> Reply to Message

David Fanning wrote:

[on calling the Draw method for an object graphics
window in response to expose events]

> Like everything else, it depends. On my non-OpenGL-
> accelerated machines | find it noticeably slower, but

> not unbearably slow for most object graphics programs.
> |t obviously depends on how complicated the graphics
> scene is to render.

This is where | don't follow - if the graphics object is
not changed it shouldn't have to be rendered over again.

Another issue is that some programs may decide to render
the graphics scene, then do changes to the graphics object
as the result of a *series* of events, waiting for a

push on a "Render" button to show the effects. If the
window is hidden/exposed in the intermediate state, then
the automatic call to the Draw method would erroneously
display the changes straight away.... Ok, | agree the
example is somewhat far-fetched, but still.

> | have learned, by the way, that speeding up object
> graphics is a high priority for the folks at RSl in
> their next release of IDL.

| would much rather that they (first, at least) focus on making
sure that widgets that worked under 4.0.1 will work under 5.X
(e.g., the "multiple UPDATE on/off" problem that masks out
the contents of scrollable sub-bases). (Oh, well, I'm just
having a bad day... :-)

Stein Vidar

Subject: Re: retain and graphics_level=2
Posted by davidf on Wed, 29 Oct 1997 08:00:00 GMT

View Forum Message <> Reply to Message

Page 5 of 7 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2040
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6744&goto=10199#msg_10199
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10199
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=6744&goto=10200#msg_10200
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=10200
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Stein Vidar Hagfors Haugan (s.v.h.haugan@astro.uio.no) writes
in response to one of my posts:

>> The fact is, object graphics windows do not have to have
>> a pixmap around to "buffer" the window's contents. The

>> object graphics themselves *are* the buffer! In fact you

>> might say that the whole point of object graphics is that

>> they are persistent and that the object "scene" can be

>> reproduced at any time (albeit slowly sometimes).

> NNNNNNNNNNNNNNNNNNNNNNN

> And this is a bit worrying. Let me say that | have very little

> experience (yet) with object graphics, but | don't understand
> why one is forced (implicitly) to use a slow method to

> refresh windows that have been overlaid by another window.
>

>> | have gotten into the habit of setting Retain=0 and
>> Expose=1 on any window | create for object graphics
>> output. On any expose event | simply call the Draw
>> method on the Window. Simple. Easy. And it works
>> every time.

> But how slow is it, really?

Like everything else, it depends. On my non-OpenGL-
accelerated machines | find it noticeably slower, but

not unbearably slow for most object graphics programs.
It obviously depends on how complicated the graphics
scene is to render. The thing about graphics objects

is that they are truly three-dimensional, and the

scene itself is in a 3D space, even if what you want

to render is on a 2D plane. There is an overhead in
carrying all that 3D information around. (This is the
essential problem, by the way, that makes working with
object graphics programs over an X-terminal essentially
impossible. There are, as yet, no standard X commands
for quickly rendering a 3D scene.)

In practice, | think people will be using object graphics

for those occasions when it obviously makes sense (e.qg.,
when you want to rotate a 3D surface) and continuing to use
direct graphics for those occasions when it doesn't

(e.g. line plots, images, etc.). This, as it happens, is

what RSI currently recommends. Unfortunately, | have found
it reasonably difficult to combine object graphics and

direct graphics modules into one seamless application.

Most of the time the problems involve the use of color.
The object graphics system uses a different color model

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

than the direct graphics system and it is quite difficult

to get the two systems to work well together. (This is

why | have been emphasising color protection schemes in
my IDL courses lately. If your IDL program can't protect
its own colors, you are going to be in a world of hurt

as you begin running your program along with programs
that use object graphics.)

In any case, knowing when and how to use "buffering” is
not just an issue with respect to direct verses object
graphics. It is also an issue with respect to 8-bit

verses 24-bit color with direct graphics. Images,

for example, have to be redisplayed on a 24-bit system
after the color table has been changed. This can be

a "buffering" issue. At least thinking of it as a

buffering issue makes it easier to understand, | think.
This issue is also becoming more prominent as most
computers these days are purchased with 24-bit graphics
cards. Are your IDL programs going to run in a 24-bit
system?

| have been preoccupied with many of these issues for
the past six months or so. In fact, if | weren't
distracting myself writing newsgroup articles | would
be working on this very chapter in my IDL book!

Those of you who are particularly interested and are as tired
(as I am) of waiting for this damn book to be finished can
hear my latest thoughts on the subject by attending my

IDL Programming Techniques course Nov 18-21 in Columbia,
Maryland. About half the course will be devoted to these
topics. There are just a few seats left. You can find

details on my web page.

| have learned, by the way, that speeding up object
graphics is a high priority for the folks at RSI in
their next release of IDL.

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

E-Mail: davidf@dfanning.com

Phone: 970-221-0438

Coyote's Guide to IDL Programming: http://www.dfanning.com/

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

