
Subject: Memory allocation problem:
Posted by Inigo Garcia on Fri, 20 Feb 1998 08:00:00 GMT
View Forum Message <> Reply to Message

I think this is a bug in IDL, probably someone else has noticed it before:
If I create a huge array, and then delete it, the allocated memory still remains
!!! Look a clear example:

IDL> a=fltarr(10000,50000)
IDL> a=0

The array is not there any more, so the allocated memory should be freed,
shouldn't it ? But it is not. And I don't like the idea of exiting IDL everytime I
decide to use some big temporary arrays, I find it ridiculous. If these 2 lines
are within a routine, the problem is exctly the same.

I am in a Sun UltraSparc, with Solaris and IDL 5.0.2.

Please, any solutions will be appreciated.

	I~nigo.
--
 \\|//
 (o o)
 +-----------------------oOOo-(_)-oOOo----------------------- --+
| I~nigo Garcia Ruiz |
| Kapteyn Instituut Phone: +31-(0)50-3634083 |
| Landleven 12 Fax: +31-(0)50-3636100 |
| 9747 AD GRONINGEN (Netherlands) e-mail: iruiz@astro.rug.nl |
 +--- --+

Subject: Re: Memory allocation problem:
Posted by jyli on Wed, 25 Feb 1998 08:00:00 GMT
View Forum Message <> Reply to Message

David Fanning (davidf@dfanning.com) wrote:

: This is a result of IDL being written in C and using the C library
: functions (malloc and free) for memory allocation. In most C libraries,
: memory that is freed is NOT returned to the operating system. The C
: program retains this memory and will reuse it for future calls to malloc
: (assuming that the new allocation will fit in the freed block).

Retains this memory for how long?
(1) life of a subroutine
(2) life of a main routine
(3) life of an IDL session

Page 1 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2128
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7261&goto=11016#msg_11016
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11016
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1232
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7261&goto=11175#msg_11175
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11175
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

thanks

--

 -- ------------
Jason Y. Li | Tel : (301) 286-1029
Climate and Radiation Branch | Fax : (301) 286-1759
NASA Goddard Space Flight Center | WWW : http://climate.gsfc.nasa.gov
Greenbelt, MD 20771, USA | Email: jyli@climate.gsfc.nasa.gov
 -- ------------
 Beauty of style, harmony, grace and good rhythm depend on simplicity.

Subject: Re: Memory allocation problem:
Posted by David Kastrup on Fri, 27 Feb 1998 08:00:00 GMT
View Forum Message <> Reply to Message

jyli@anchor.gsfc.nasa.gov (Jason Li) writes:

> David Fanning (davidf@dfanning.com) wrote:
>
> : This is a result of IDL being written in C and using the C library
> : functions (malloc and free) for memory allocation. In most C libraries,
> : memory that is freed is NOT returned to the operating system. The C
> : program retains this memory and will reuse it for future calls to malloc
> : (assuming that the new allocation will fit in the freed block).
>
> Retains this memory for how long?
> (1) life of a subroutine
> (2) life of a main routine
> (3) life of an IDL session

(3). However, glibc, the library used in newer versions of Linux (for
exmaple) will allocate larger chunks of memory with a different
mechanism making it possible to return such larger pieces of memory to
the operating system the moment they are freed, regardless of
allocation order.

The main advantage of this scheme is not as large as one would naï¿½vely
be let to think, as unused memory tends to get swapped out, anyway,
when memory gets scarce. But at least this avoids more useful memory
pieces to be swapped out instead (causing a bit of thrashing) and it
reduces the general impact on swap space related resources.

If you are concerned about proper resource utilization, you should
choose your operating system accordingly.

Page 2 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2477
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7261&goto=11156#msg_11156
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11156
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

--
David Kastrup Phone: +49-234-700-5570
Email: dak@neuroinformatik.ruhr-uni-bochum.de Fax: +49-234-709-4209
Institut fï¿½r Neuroinformatik, Universitï¿½tsstr. 150, 44780 Bochum, Germany

Page 3 of 3 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

