Subject: functions considered as variables
Posted by Gary Bust on Wed, 04 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

This might be related to my previous post - | don't know. Anyway, | am
buzzing away, my driver code calling other routines just fine. | have
compliled a .pro file that has a bunch of routines in it, and all of a sudden,
| am stopped in my driver routine at:

junk = getlatlon(alt_gps)
with the error notice: variable getlatlon not found.

So | do a help, and sure enough it says getlatlon is a function. So, before
returning to main, i.e. right where the code stopped, | just type the above
from the command line - and it works fine. What gives?

Thanks a lot in advance.

-Gary

http://www.dejanews.com/ Now offering spam-free web-based newsreading

Subject: Re: functions considered as variables
Posted by Selwyn Yee on Fri, 06 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

I've seen this before. It happens when, in your .pro file, you are
trying to call a function which has not yet been compiled. Either the
functionisin a

different module, or is in the same .pro file, but below your calling
statement.

Because IDL is an interpretive language, it executes and/or compiles the
code in your .pro file from top to bottom. Your function call:

junk = getlatlon(alt_gps)
looks just like you are subscripting an array, if IDL hasn't yet
compiled your

function getlatlon.

The solution is to use the forward_function command in IDL. The syntax
is:

forward_function functionl, function2, ...

So for you, you would precede your function call with:

Page 1 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1737
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7287&goto=11056#msg_11056
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11056
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2520
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7287&goto=11212#msg_11212
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11212
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

forward_function getlatlon

Hope this does the trick for you.

Selwyn M.T. Yee Phone: (650) 604-2861
Airborne Sensor Facility Fax: (650) 604-4987
NASA Ames Research Center Email: syee@mail.arc.nasa.gov

gbust@arlut.utexas.edu wrote:

This might be related to my previous post - | don't know. Anyway, | am
buzzing away, my driver code calling other routines just fine. | have
compliled a .pro file that has a bunch of routines in it, and all of a sudden,
| am stopped in my driver routine at:

junk = getlatlon(alt_gps)
with the error notice: variable getlatlon not found.

So | do a help, and sure enough it says getlatlon is a function. So, before
returning to main, i.e. right where the code stopped, | just type the above
from the command line - and it works fine. What gives?

Thanks a lot in advance.

-Gary

VVVVVVVVVYVVYVYVYVYVYV

\%

-----== Posted via Deja News, The Leader in Internet Discussion ==-----
http://www.dejanews.com/ Now offering spam-free web-based newsreading

\%

Subject: Re: functions considered as variables
Posted by davidf on Wed, 11 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

Dirk Fabian (dirk@uwast.astro.wisc.edu) writes:

>> The solution is to use the forward_function command in IDL. The syntax
>> js:

>>

>> forward_function functionl, function2, ...

>>

>

> Had this problem just the other day.

Page 2 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7287&goto=11117#msg_11117
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11117
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

The other (and coding free) solution is to just compile your driver
function twice. On the first pass, it will misinterpret the information
in the driver, but on the second pass, the support functions will be
interpretted properly as functions (instead of arrays).

I'm not sure if this will work if you have very intricate among your
support functions.

but IDL> .run foo.pro
IDL> .run foo.pro

VVVVVVVYVYVYVYVYVYV

will work for the simple things.

Yes, but for the wrong reasons. Better to write your code
correctly in the first place. (Or, at least understand

what causes error messages and how to fix the underlying
problem and not just the symptom.)

Cheers,

David

David Fanning, Ph.D.

Fanning Software Consulting

E-Mail: davidf@dfanning.com

Phone: 970-221-0438

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: functions considered as variables
Posted by dirk on Wed, 11 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

In article <3500B36D.A8@mail.arc.nasa.gov>,

Selwyn Yee <syee@mail.arc.nasa.gov> wrote:

> |'ve seen this before. It happens when, in your .pro file, you are

> trying to call a function which has not yet been compiled. Either the

> function is in a

> different module, or is in the same .pro file, but below your calling

> statement.

> Because IDL is an interpretive language, it executes and/or compiles the
> code in your .pro file from top to bottom. Your function call:

[snip]
>

> The solution is to use the forward_function command in IDL. The syntax
> is:

Page 3 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2506
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7287&goto=11118#msg_11118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11118
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

> forward_function functionl, function2, ...
>

Had this problem just the other day.

The other (and coding free) solution is to just compile your driver
function twice. On the first pass, it will misinterpret the information
in the driver, but on the second pass, the support functions will be
interpretted properly as functions (instead of arrays).

I'm not sure if this will work if you have very intricate among your
support functions.

but IDL> .run foo.pro
IDL> .run foo.pro

will work for the simple things.

- Dirk

Subject: Re: functions considered as variables
Posted by J.D. Smith on Wed, 11 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

gbust@arlut.utexas.edu wrote:
>
This might be related to my previous post - | don't know. Anyway, | am
buzzing away, my driver code calling other routines just fine. | have
compliled a .pro file that has a bunch of routines in it, and all of a sudden,
| am stopped in my driver routine at:

junk = getlatlon(alt_gps)
with the error notice: variable getlatlon not found.

So | do a help, and sure enough it says getlatlon is a function. So, before
returning to main, i.e. right where the code stopped, | just type the above
from the command line - and it works fine. What gives?

Thanks a lot in advance.

-Gary

VVVVVVVYVYVVYVYVYVYVYV

\%

-----== Posted via Deja News, The Leader in Internet Discussion ==-----
http://www.dejanews.com/ Now offering spam-free web-based newsreading

\%

| expect you did some .run or .compile statements in between there.
This is indeed an interesting problem. | replicated it with the single

Page 4 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7287&goto=11119#msg_11119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11119
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

.pro file (name t2.pro), containing:

pro t2
print,t1(4)

end

function t1,x
return,x"2

end

| get:

IDL> t2

% Variable is undefined: T1.

% Execution halted at: T2 2
/u/jdsmith/idl/pro/mylib/test/t2.pro

% T2 2
/u/jdsmith/idl/pro/mylib/test/t2.pro

% $MAINS

IDL> help

% At T2 2 /u/jdsmith/idl/pro/mylib/test/t2.pro

% T2 2 /u/jdsmith/idl/pro/mylib/test/t2.pro

% $MAINS

T1 UNDEFINED = <Undefined>

Compiled Procedures:

$MAIN$ CDEF CLOAD MYKEYS2 T2
Compiled Functions:

FILEPATH

and then,

IDL> retall

IDL> .run t2

% Compiled module: T2.
% Compiled module: T1.

IDL> t2

% Variable is undefined: T1.

% Execution halted at: T2 2
/u/jdsmith/idl/pro/mylib/test/t2.pro

% $MAINS

IDL> help

% At T2 2 /u/jdsmith/idl/pro/mylib/test/t2.pro

% $MAINS

T1 UNDEFINED = <Undefined>

Compiled Procedures:

$MAIN$ CDEF CLOAD MYKEYS2 T2
Compiled Functions:

FILEPATH T1

Page 5 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

As you can see, T1 is both undefined and a compiled function. The
manual quotes me:

To determine if it is compiling an array subscript or a function call,

IDL checks its internal table of known functions. If it finds a function

name that matches the unknown element in the command (fish, in the above
example), it calls that function with the argument specified. If IDL

does not find a function with the correct name in its table of known

functions, it assumes that the unknown element is an array, and attempts

to return the value of the designated element of that array.

which seems not to be the case here.

If | repeat the process, with:

IDL> .run t2
% Compiled module: T2.
% Compiled module: T1.
IDL> t2

16

it works. 1 think this probably has to do with an incorrect bit of
parsing in the IDL compiler... perhaps the function hash table it uses
is not updated at the right time. Quite strange, but perfectly
avoidable.

The real solution to this headache is to put supporting functions in a
.pro file *before* those functions which refer to them, that way they
will always be compiled in time, and you'll never have this problem.
You could also put the function in its own .pro file, since IDL will
always look on the path first (but, apparently, not always at its own
internal table of compiled functions). IDL's belated introduction of []
for array subscripting will eventually eliminate this problem entirely
(by requiring it's use instead of ()). Imagine the inefficiency of
checking for a function each time a () subscript is made (actually only
when the module is compiled, but recompiling is one of my chief
activities)... yet another reason to adopt [] as your subscripting
mechanism. | hate those wasted cycles.

JD

J.D. Smith [*| WORK: (607) 255-5842
Cornell University Dept. of Astronomy |*| (607) 255-4083
206 Space Sciences Bldg. |*| FAX: (607) 255-5875

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

lthaca, NY 14853 I

Page 7 of 7 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

