Subject: REBIN Question
Posted by pford on Sat, 14 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

REBIN question

Either | have uncovered a bug in REBIN in the Mac version of IDL V 5.0.3
or | doni¢ Y4t fully understand how REBIN works. | want to take a 2-D byte
array at_target that is 64X64 in size and make it into a 1-D byte array

with the same number of elements and vis versa. The results are not what
| am expecting so | used the code below to test it. The displayed images
are not even close to each other.

Would someone be kind enough to explain why and how | can do this other
than using the code below(test2) the offending section.

Thanks.

pro test
window,5,xsize= 128, ysize = 128
window,6,xsize= 128, ysize = 128

at_target= bytarr(64,64)
at_target(0:63,0:63) = 255B
at_target(10:20,10:20) = 200B;

wset,5

tvscl, at_target

wset,6

tvscl, rebin(rebin(at_target, 64*64),64,64)
stop

end

pro test2

window,5,xsize= 128, ysize = 128
window,6,xsize= 128, ysize = 128

at_target = bytarr(64,64)
at_target2 = bytarr(64,64)
at_target(0:63,0:63) = 255B
at_target(10:20,10:20) = 200B;

dltarget = btarr(64*64)
n=0
for x=0,63 do begin

Page 1 of 24 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1665
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=11091#msg_11091
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11091
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

for y=0,63 do begin
dltarget[n] = at_target[x,y]
at_target2 [x,y] = dltarget[n]
n=n+1
endfor; for y=0,63 do begin
endfor; for x=0,63 do begin

wset,5

tvscl, at_target
wset,6

tvscl, at_target2
stop

end

Patrick Ford
pford@bcm.tmc.edu

Subject: Re: REBIN Question
Posted by Armand J. L. Jongen on Tue, 17 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

Hi Patrick
Patrick Ford, MD wrote:
REBIN question

Either | have uncovered a bug in REBIN in the Mac version of IDL V 5.0.3
or | dont fully understand how REBIN works. | want to take a 2-D byte
array at_target that is 64X64 in size and make it into a 1-D byte array

with the same number of elements and vis versa. The results are not what
| am expecting so | used the code below to test it. The displayed images
are not even close to each other.

Would someone be kind enough to explain why and how | can do this other
than using the code below(test2) the offending section.

Thanks.

VVVVVVVVYVVYVYVYVYVYV

| finally understand what you want to do and what is happening. The

trick is

that rebin does change the contents of the array by bilineair

interpolation when

maximizing a dimension and neighbourhood averaging when minimizing. By
doing

Page 2 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1988
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=11270#msg_11270
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11270
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

rebin(at_target, 64*64) on a bytarr(64,64) you rescale this array,

thus getting a bytarr(4096,1). BUT! Rebin uses neighborhood averaging
whereby

your code:

> at_target= bytarr(64,64)
> at_target(0:63,0:63) = 255B
> at_target(10:20,10:20) = 200B;

produces a bytarr(4096,1) with roughly
at_target(640:1280,1) EQ 200B

If you then again use rebin(at_target,64,64) this image will be

stretched

in the second dimension whereby making at_target(10:20,*) EQ 200B. So
instead

of a square you end up with a line!

This is not what you want to do. You should use REFORM instead which
will only

change the way in which the array-elements are indexed and NOT alter the
actual

data. Doing this in both instances will give the desired result.

pro test
window,5,xsize= 128, ysize = 128
window,6,xsize= 128, ysize = 128

at_target= bytarr(64,64)
at_target(0:63,0:63) = 255B
at_target(10:20,10:20) = 200B;

wset,5

tvscl, at_target

wset,6

; REBIN modifies the data

; tvscl, rebin(rebin(at_target, 64*64),64,64)

; REFORM does NOT modify the data

tvscl, reform(reform(at_target, 64*64),64,64)
end

Hope this makes things a bit clear. Cheers,

Armand

kkkkkkkkkkkkkkkkkkkkkkkkkhkkkhkkkhkkkkkkkkkkhkkhkkkhkkhkkkkkhkkkkkkkkhkkhkkhkk kkhkkkkkkhkkkk

Page 3 of 24 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Armand J.L. Jongen Academic Medical Centre
Laser Centre

Phone +31-20-5667418 Il Meibergdreef 9

Fax +31-20-6975594 |~ ~| 1105 AZ Amsterdam

E-mail a.j.jongen@amc.uva.nl [|[o o]|] The Netherlands
*****************************0OOO***()***OOOO************* kkkkkkkkkkkk

Subject: Re: REBIN Question
Posted by pford on Wed, 18 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

Thanks to all who replied. | see that | need to use reform, but now |
understand why rebin was giving the "odd" results.

Patrick Ford, MD
pford@bcm.tmc.edu

Armand J.L.Jongen (a.j.jongen@amc.uva.nl) wrote:
. Hi Patrick

. Patrick Ford, MD wrote:
> =

: > REBIN question
D> =

: > Either | have uncovered a bug in REBIN in the Mac version of IDL V 5.0.=
3

: > or | don=B9t fully understand how REBIN works. | want to take a 2-D by=
S te

> array at_target that is 64X64 in size and make it into a 1-D byte array=

: > with the same number of elements and vis versa. The results are not wh=
cat

: > | am expecting so | used the code below to test it. The displayed image=
'S

: > are not even close to each other.

1> =

: > Would someone be kind enough to explain why and how | can do this other=

: > than using the code below(test2) the offending section.
D> =

: > Thanks.
1> =

Page 4 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1665
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=11250#msg_11250
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11250
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

. | finally understand what you want to do and what is happening. The
s trick is =

: that rebin does change the contents of the array by bilineair

> interpolation when

: maximizing a dimension and neighbourhood averaging when minimizing. By
:doing =

: rebin(at_target, 64*64) on a bytarr(64,64) you rescale this array, =

: thus getting a bytarr(4096,1). BUT! Rebin uses neighborhood averaging
: whereby
: your code:

: > at_target=3D bytarr(64,64)
> at_target(0:63,0:63) =3D 255B
: > at_target(10:20,10:20) =3D 200B;

: produces a bytarr(4096,1) with roughly
. at_target(640:1280,1) EQ 200B

. If you then again use rebin(at_target,64,64) this image will be

. stretched

. in the second dimension whereby making at_target(10:20,*) EQ 200B. So
> instead

. of a square you end up with a line!

: This is not what you want to do. You should use REFORM instead which

> will only

: change the way in which the array-elements are indexed and NOT alter the
> actual

. data. Doing this in both instances will give the desired result.

. pro test
: window,5,xsize=3D 128, ysize =3D 128
: window,6,xsize=3D 128, ysize =3D 128

. at_target=3D bytarr(64,64)
. at_target(0:63,0:63) =3D 255B
. at_target(10:20,10:20) =3D 200B;

. wset,5
. tvscl, at_target

Page 5 of 24 ---- Cenerated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

. wset,6

. ; REBIN modifies the data

. ; tvscl, rebin(rebin(at_target, 64*64),64,64)

. ; REFORM does NOT modify the data

. tvscl, reform(reform(at_target, 64*64),64,64)
: end

: Hope this makes things a bit clear. Cheers,

: Armand

: kkkkkkkkkkkkkkkkhkkkkkhkkkkkkhhkkkhkhkkhkkkhkhhkkhkhkkhkkkhkkhhhkkkhkkhkkkhkkhhhkkkhkhkk kkkkkhkkkkhkkk
: Armand J.L. Jongen Academic Medical Centre
: Laser Centre

: Phone +31-20-5667418 \[|||// Meibergdreef 9

. Fax +31-20-6975594 |~ ~| 1105 AZ Amsterdam

: E-mail a.jjongen@amc.uva.nl [Jo o]|] The Netherlands
: *****************************0OOO***()***0000************* *kkkkkkkkhkkk

Subject: Re: rebin question
Posted by hradilv.nospam on Fri, 22 Mar 2002 17:11:17 GMT

View Forum Message <> Reply to Message

print, round(rebin(float([5,5,5,5,4]),1))
Hassle?
Maybe you could write a function. Which leads me to a new question:

Is it possible to define a function or procedure in IDL that can take
an arbitrary number of arguments, e.g.:

function my_rebin, a, argl, arg2, ...

return, round(rebin(float(a), argl, arg2, ...))
end

On Fri, 22 Mar 2002 11:58:41 -0500, Jonathan Joseph <jj21@cornell.edu>
wrote:

> | figured | would use rebin to downsample an image by averaging the
> pixels in blocks of specified size. What | discovered, was that for

> integer type images, rebin averages the pixels, but then instead of

> rounding to the nearest integer, simply takes the integer part of

> the average. Hence:

Page 6 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29822#msg_29822
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29822
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> print, rebin([5,5,5,5,4], 1)

>

> gives the result of 4, not 5 which is what | would like. | suppose

> this is done for speed - to work around the problem, | need to convert

> to a floating point type, do the rebin, then round, then convert back

> to the proper integer type - a hassle.

>

> But, | would really like a more generic way of doing downsampling

> of this sort, without the high overhead of a loop. Apart from

> taking the mean of a block of pixels, | would also like the option

> of downsampling using the median of a block of pixels, or using the

> mean of a block of pixels disregarding the farthest outlier (or

> n outliers).

>

> Has anyone written IDL code to do downsampling in a more generalized
> way than rebin, or have any clever ideas about how to do it quickly?

>

> Thanks

Subject: Re: rebin question
Posted by Craig Markwardt on Fri, 22 Mar 2002 18:31:18 GMT

View Forum Message <> Reply to Message

hradilv.nospam@yahoo.com (Vince) writes:
print, round(rebin(float([5,5,5,5,4]),1))
Hassle?

Maybe you could write a function. Which leads me to a new question:

an arbitrary number of arguments, e.g.:
function my_rebin, a, argl, arg2, ...

return, round(rebin(float(a), argl, arg2, ...))

>
>
>
>
>
>
> |s it possible to define a function or procedure in IDL that can take
>
>
>
>
>
> end

Answer: no, but I've wanted one for a long time.

Craig

Page 7 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29918#msg_29918
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29918
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: rebin question
Posted by Jonathan Joseph on Fri, 22 Mar 2002 18:40:32 GMT

View Forum Message <> Reply to Message

It looks nice doesn't it, and | did write a procedure for the simple
case of averaging, but it's not as clean cut as you indicate:

1. first one needs to get the type of the incoming image - you don't
want to round the result of a floating point type image - that
would give you the wrong result.

2. conversion should be done to double precision floating point
(not float) otherwise large long integers will lose precision.
loss of precision for large L64 integers will occur even with
conversion to double, so they can't be handled properly at all.

3. need to convert back to the proper type, so your solution
should be wrapped by a fix(..., type=type)

4. instead of a rebin, there is now a rebin, two type conversions
and a round, which will slow things down and use more memory.

So, it is a hassle.

But yes, it's still not difficult to write a function to handle the

SIMPLE case of averaging for CERTAIN data types. But that does not
help with the problem of writing a more general function that handles
downsampling using median or downsampling using a mean excluding
outliers (pixels with values far from the mean) or downsampling using
your favorite method. Doing this quickly in IDL means doing it

w/o loops, so while conceptually the problem is not difficult, it

does seem somewhat more difficult to do it properly in IDL.

Anyone out there thought about this problem before?
-Jonathan

Vince wrote:

>

> print, round(rebin(float([5,5,5,5,4]),1))
>

> Hassle?

>

Page 8 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2764
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29917#msg_29917
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29917
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Maybe you could write a function. Which leads me to a new question:

Is it possible to define a function or procedure in IDL that can take
an arbitrary number of arguments, e.qg.:

function my_rebin, a, argl, arg2, ...

return, round(rebin(float(a), argl, arg2, ...))
end

On Fri, 22 Mar 2002 11:58:41 -0500, Jonathan Joseph <jj21@cornell.edu>
wrote:

VVVVVVVYVYVYVYVYVYV

>> | figured | would use rebin to downsample an image by averaging the
>> pixels in blocks of specified size. What | discovered, was that for

>> integer type images, rebin averages the pixels, but then instead of
>> rounding to the nearest integer, simply takes the integer part of

>> the average. Hence:

>>

>> print, rebin([5,5,5,5,4], 1)

>>

>> gives the result of 4, not 5 which is what | would like. | suppose

>> this is done for speed - to work around the problem, | need to convert
>> to a floating point type, do the rebin, then round, then convert back
>> to the proper integer type - a hassle.

>>

>> But, | would really like a more generic way of doing downsampling
>> of this sort, without the high overhead of a loop. Apart from

>> taking the mean of a block of pixels, | would also like the option

>> of downsampling using the median of a block of pixels, or using the
>> mean of a block of pixels disregarding the farthest outlier (or

>> n outliers).

>>

>> Has anyone written IDL code to do downsampling in a more generalized
>> way than rebin, or have any clever ideas about how to do it quickly?
>>

>> Thanks

Subject: Re: rebin question
Posted by hradilv.nospam on Fri, 22 Mar 2002 18:53:11 GMT

View Forum Message <> Reply to Message

Sorry. | see the hassle now.

| just did a quick search for 'rebin' at
http://www.astro.washington.edu/deutsch/idl/htmlhelp/index.h tml and
maybe you should take a look at 'boxave'?

Page 9 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4123
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29914#msg_29914
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29914
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

On Fri, 22 Mar 2002 13:40:32 -0500, Jonathan Joseph <jj21@cornell.edu>
wrote:

>

> |t looks nice doesn't it, and | did write a procedure for the simple

> case of averaging, but it's not as clean cut as you indicate:

>

> 1. first one needs to get the type of the incoming image - you don't

> want to round the result of a floating point type image - that

> would give you the wrong result.

>

> 2. conversion should be done to double precision floating point

> (not float) otherwise large long integers will lose precision.

> |oss of precision for large L64 integers will occur even with

> conversion to double, so they can't be handled properly at all.

>

> 3. need to convert back to the proper type, so your solution

> should be wrapped by a fix(..., type=type)

>

> 4. instead of a rebin, there is now a rebin, two type conversions

> and a round, which will slow things down and use more memory.

>

> So, it is a hassle.

>

> But yes, it's still not difficult to write a function to handle the

> SIMPLE case of averaging for CERTAIN data types. But that does not
> help with the problem of writing a more general function that handles
> downsampling using median or downsampling using a mean excluding
> outliers (pixels with values far from the mean) or downsampling using
> your favorite method. Doing this quickly in IDL means doing it

> w/o loops, so while conceptually the problem is not difficult, it

> does seem somewhat more difficult to do it properly in IDL.

>

> Anyone out there thought about this problem before?

>

> -Jonathan

>

> Vince wrote:

>>

>> print, round(rebin(float([5,5,5,5,4]),1))

>>

>> Hassle?

>>

>> Maybe you could write a function. Which leads me to a new question:
>>

>> |s it possible to define a function or procedure in IDL that can take
>> an arbitrary number of arguments, e.g.:

Page 10 of 24 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>

>> function my_rebin, a, argl, arg2, ...

>>

>> return, round(rebin(float(a), argl, arg2, ...))

>> end

>>

>> On Fri, 22 Mar 2002 11:58:41 -0500, Jonathan Joseph <jj21@cornell.edu>
>> wrote:

>>

>>> | figured | would use rebin to downsample an image by averaging the
>>> pixels in blocks of specified size. What | discovered, was that for
>>> integer type images, rebin averages the pixels, but then instead of
>>> rounding to the nearest integer, simply takes the integer part of

>>> the average. Hence:

>>>

>>> print, rebin([5,5,5,5,4], 1)

>>>

>>> gives the result of 4, not 5 which is what | would like. | suppose

>>> this is done for speed - to work around the problem, | need to convert
>>> to a floating point type, do the rebin, then round, then convert back
>>> to the proper integer type - a hassle.

>>>

>>> But, | would really like a more generic way of doing downsampling
>>> of this sort, without the high overhead of a loop. Apart from

>>> taking the mean of a block of pixels, | would also like the option

>>> of downsampling using the median of a block of pixels, or using the
>>> mean of a block of pixels disregarding the farthest outlier (or

>>> n outliers).

>>>

>>> Has anyone written IDL code to do downsampling in a more generalized
>>> way than rebin, or have any clever ideas about how to do it quickly?
>>>

>>> Thanks

Subject: Re: rebin question
Posted by Jonathan Joseph on Fri, 22 Mar 2002 18:53:30 GMT

View Forum Message <> Reply to Message

You could certainly write a function that takes an arbitrary number
of arguments up to a limit, then use n_params to see how many you
actually got. It looks like IDL only allows up to 8-dimensional

arrays (which is a goodly number). 1 only wrote the 2-d case,

but the n-d case should be possible.

-Jonathan

Craig Markwardt wrote:

Page 11 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2764
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29915#msg_29915
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29915
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>

> hradilv.nospam@yahoo.com (Vince) writes:

>

>> print, round(rebin(float([5,5,5,5,4]),1))

>>

>> Hassle?

>>

>> Maybe you could write a function. Which leads me to a new question:
>>

>> |[s it possible to define a function or procedure in IDL that can take
>> an arbitrary number of arguments, e.g.:

>>

>> function my_rebin, a, argl, arg2, ...

>> return, round(rebin(float(a), argl, arg2, ...))
>> end

>

> Answer: no, but I've wanted one for a long time.
>
> Craig
>
>

> Craig B. Markwardt, Ph.D. EMAIL: craigmnet@cow.physics.wisc.edu
> Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response

Subject: Re: rebin question
Posted by David Fanning on Fri, 22 Mar 2002 19:14:32 GMT

View Forum Message <> Reply to Message

Jonathan Joseph (jj21@cornell.edu) writes:

> You could certainly write a function that takes an arbitrary number

> of arguments up to a limit, then use n_params to see how many you
> actually got. It looks like IDL only allows up to 8-dimensional

> arrays (which is a goodly number). | only wrote the 2-d case,

> but the n-d case should be possible.

I'm not sure "arbitrary" is the right word here.

One can write procedures and functions with a "variable”
number of arguments, up to some arbitrary (to RSI)
number of 100 or 200 or whatever it is. But each
variable *must* be defined on the procedure or function
definition line.

In the case of the function under discussion, you

Page 12 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4003
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29913#msg_29913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29913
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

could define 8 arguments (the first would probably
have to be a required argument, and the rest could

be

optional). But you will need some kind of CASE

statement to call REBIN correctly:

CASE N_PARAMS() OF

0:

2:

Message, 'Whoops> Wrong!"
1: A = REBIN(argl)
A = REBIN(arg1, arg2)

ENDCASE

Cheers,

David

David W. Fanning, Ph.D.

Fanning Software Consulting

Phone: 970-221-0438, E-mail: david@dfanning.com

Coyote's Guide to IDL Programming: http://www.dfanning.com/

To

[I-Free IDL Book Orders: 1-888-461-0155

Subject: Re: rebin question
Posted by Jonathan Joseph on Fri, 22 Mar 2002 19:20:54 GMT

View Forum Message <> Reply to Message

Th

anks, that's seems more reasonable than what | was thinking.

It still uses a loop, but only over the number of elements in the
box. I think I can definitely adapt this strategy to my needs.

-Jonathan

Vince wrote:

>

> Sorry. | see the hassle now.

>

> | just did a quick search for 'rebin' at

> http://www.astro.washington.edu/deutsch/idl/htmlhelp/index.h tml and
> maybe you should take a look at 'boxave'?

>

> On Fri, 22 Mar 2002 13:40:32 -0500, Jonathan Joseph <jj21@cornell.edu>
> wrote:

>

>>

>> |t looks nice doesn't it, and | did write a procedure for the simple

>>
>>

case of averaging, but it's not as clean cut as you indicate:

Pag

e 13 of 24 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2764
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29912#msg_29912
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29912
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> 1. first one needs to get the type of the incoming image - you don't
>> want to round the result of a floating point type image - that

>> would give you the wrong result.

>>

>> 2. conversion should be done to double precision floating point

>> (not float) otherwise large long integers will lose precision.

>> |oss of precision for large L64 integers will occur even with

>> conversion to double, so they can't be handled properly at all.

>>

>> 3. need to convert back to the proper type, so your solution

>> should be wrapped by a fix(..., type=type)

>>

>> 4, instead of a rebin, there is now a rebin, two type conversions

>> and a round, which will slow things down and use more memory.
>>

>> So, it is a hassle.

>>

>> But yes, it's still not difficult to write a function to handle the

>> SIMPLE case of averaging for CERTAIN data types. But that does not
>> help with the problem of writing a more general function that handles
>> downsampling using median or downsampling using a mean excluding
>> outliers (pixels with values far from the mean) or downsampling using
>> your favorite method. Doing this quickly in IDL means doing it

>> w/o loops, so while conceptually the problem is not difficult, it

>> does seem somewhat more difficult to do it properly in IDL.

>>

>> Anyone out there thought about this problem before?

>>

>> -Jonathan

>>

>> Vince wrote:

>>>

>>> print, round(rebin(float([5,5,5,5,4]),1))

>>>

>>> Hassle?

>>>

>>> Maybe you could write a function. Which leads me to a new question:
>>>

>>> |s it possible to define a function or procedure in IDL that can take
>>> an arbitrary number of arguments, e.g.:

>>>

>>> function my_rebin, a, argl, arg2, ...

>>>

>>> return, round(rebin(float(a), argl, arg2, ...))

>>> end

>>>

>>> On Fri, 22 Mar 2002 11:58:41 -0500, Jonathan Joseph <jj21@cornell.edu>
>>> wrote:

Page 14 of 24 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>>
>>>> | figured | would use rebin to downsample an image by averaging the
>>>> pixels in blocks of specified size. What | discovered, was that for
>>>> integer type images, rebin averages the pixels, but then instead of
>>>> rounding to the nearest integer, simply takes the integer part of

>>>> the average. Hence:

>>>>

>>>> print, rebin([5,5,5,5,4], 1)

>>>>

>>>> gives the result of 4, not 5 which is what | would like. | suppose
>>>> this is done for speed - to work around the problem, | need to convert
>>>> to a floating point type, do the rebin, then round, then convert back
>>>> to the proper integer type - a hassle.

>>>>

>>>> But, | would really like a more generic way of doing downsampling
>>>> of this sort, without the high overhead of a loop. Apart from

>>>> taking the mean of a block of pixels, | would also like the option

>>>> of downsampling using the median of a block of pixels, or using the
>>>> mean of a block of pixels disregarding the farthest outlier (or

>>>> n outliers).

>>>>

>>>> Has anyone written IDL code to do downsampling in a more generalized
>>>> way than rebin, or have any clever ideas about how to do it quickly?
>>>>

>>>> Thanks

Subject: Re: rebin question
Posted by JD Smith on Fri, 22 Mar 2002 19:49:11 GMT

View Forum Message <> Reply to Message

Jonathan Joseph wrote:

It looks nice doesn't it, and | did write a procedure for the simple
case of averaging, but it's not as clean cut as you indicate:

1. first one needs to get the type of the incoming image - you don't
want to round the result of a floating point type image - that
would give you the wrong result.

2. conversion should be done to double precision floating point
(not float) otherwise large long integers will lose precision.
loss of precision for large L64 integers will occur even with
conversion to double, so they can't be handled properly at all.

VVVVVVVYVYVYVYVYV

Hi JJ,

Page 15 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29909#msg_29909
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29909
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Since you couldn't walk down the hall to bug me... ;)

This argument is a bit off. When you work in integer precision, all
operations occur as integer arithmetic. Thus, your original rebin
example of (5+5+5+5+4)/5=24/5=4 is an exactly correct integer
calculation. REBIN doesn't "averages the pixels, but then instead of
rounding to the nearest integer, simply take the integer part of

the average", it performs arithmetic at the precision of its inputs.

Integer arithmetic truncates, not rounds (try print,4/5). You seem to
want REBIN to switch back and forth between numeric types (in the way
you could do with float() and int()).

A better illustration is:

IDL> print,rebin([[4LL],replicate(5LL,4)],1)
4
IDL> print,total(replicate(10000000000000000000ULL,1))
1.0000000e+19
IDL> print,total(replicate(10000000000000000000ULL,?2))
1.5532559e+18
IDL> print,rebin(replicate(10000000000000000000ULL,2),1),format=" (G)'
7.766279631452242E+17

Uhh ohh, overflow, but:

IDL> print,rebin(double(replicate(10000000000000000000ULL,2)),1),
format='(G)'
1.000000000000000E+19

OK, that worked, now how about;

IDL> print,rebin(double(replicate(10000000000000000002ULL,2)),1),
format="(E30.22)'
1.0000000000000000000000E+19

Hmm, we lost that 2: insufficient precision rearing it's ugly head.

All of these are also using correct (Long-64) integer arithmethic. The
fact that you can't average together large 64-bit numbers without loss
of precision is not a problem with rebin, but with the number
representation itself. There simply isn't a big enough floating point
type into which to fit this huge integer without loss of precision, and
"rounding” is not a defined operation on integer types (if it were, we
wouldn't need floats!).

> 3. need to convert back to the proper type, so your solution
> should be wrapped by a fix(..., type=type)
>

Page 16 of 24 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> 4. instead of a rebin, there is now a rebin, two type conversions
> and a round, which will slow things down and use more memory.
>

Yes, but these are all essential in your scheme. There's no free
lunch. If you'd prefer REBIN to handle all this type conversion itself,
it would be hidden from you, but would still suffer the same
speed-penalty.

Confer the behavior of total(), which automatically upconverts

everything to float() or double(), to avoid overflow (curiously, it

didn't quite succeed in one of the examples above). REBIN could do the
exact same thing, in the exact same way, but | for one am glad it
doesn't. Sometimes | *want* integer arithmetic.

> So, itis a hassle.
Think of it as an opportunity.

But yes, it's still not difficult to write a function to handle the

SIMPLE case of averaging for CERTAIN data types. But that does not
help with the problem of writing a more general function that handles
downsampling using median or downsampling using a mean excluding
outliers (pixels with values far from the mean) or downsampling using
your favorite method. Doing this quickly in IDL means doing it

w/o loops, so while conceptually the problem is not difficult, it

does seem somewhat more difficult to do it properly in IDL.

VVVVYVYVYVYV

We had a discussion on just this a week or so ago. | have a DLM called
"reduce" which does single-dimension reduction, ala
total(array,dimension), but with your choice of method
(max/min/median/mean/clipped mean/etc.). This could be generalized
quite easily to two different swiss-army tools:

1. A smooth/convol-equivalent (preserve size, apply filter).
2. A rebin-equivalent (reduce size).

In fact, a single tool could probably do all three at once. Of course,
DLM's are a hassle.

> Anyone out there thought about this problem before?

| think people have pushed up against this problem thorughout the
history of computing. Usually it's best to spend time reviewing how
computers store and manipulate integers and floats. While it is
certainly possible to write code which handles arbitrary precision, the
tremendous operational overheads of these schemes would have you
screaming for your fixed-width ints and floats. It's a tradeoff between

Page 17 of 24 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

speed and flexibility, and it's one we have to work around.

JD

>

> Vince wrote:

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

print, round(rebin(float([5,5,5,5,4]),1))
Hassle?
Maybe you could write a function. Which leads me to a new question:

Is it possible to define a function or procedure in IDL that can take
an arbitrary number of arguments, e.g.:

function my_rebin, a, argl, arg2, ...

return, round(rebin(float(a), argl, arg2, ...))
end

On Fri, 22 Mar 2002 11:58:41 -0500, Jonathan Joseph <jj21@cornell.edu>
wrote:

>>> | figured | would use rebin to downsample an image by averaging the
>>> pixels in blocks of specified size. What | discovered, was that for
>>> integer type images, rebin averages the pixels, but then instead of
>>> rounding to the nearest integer, simply takes the integer part of

>>> the average. Hence:

>>>

>>> print, rebin([5,5,5,5,4], 1)

>>>

>>> gives the result of 4, not 5 which is what | would like. | suppose

>>> this is done for speed - to work around the problem, | need to convert
>>> to a floating point type, do the rebin, then round, then convert back
>>> to the proper integer type - a hassle.

>>>

>>> But, | would really like a more generic way of doing downsampling
>>> of this sort, without the high overhead of a loop. Apart from

>>> taking the mean of a block of pixels, | would also like the option

>>> of downsampling using the median of a block of pixels, or using the
>>> mean of a block of pixels disregarding the farthest outlier (or

>>> n outliers).

>>>

>>> Has anyone written IDL code to do downsampling in a more generalized
>>> way than rebin, or have any clever ideas about how to do it quickly?
>>>

>>> Thanks

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: rebin question
Posted by Mark Fardal on Mon, 25 Mar 2002 06:50:21 GMT

View Forum Message <> Reply to Message

hradilv.nospam@yahoo.com (Vince) writes:

> Maybe you could write a function. Which leads me to a new question:
>

> |s it possible to define a function or procedure in IDL that can take

> an arbitrary number of arguments, e.qg.:

>

> function my_rebin, a, argl, arg2, ...

>

> return, round(rebin(float(a), argl, arg2, ...))

> end

Sure. Something like this:

function my_rebin, a, $
arg0, argl, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9
;continue to heart's content

narg = n_params()-1
command = 'result = round(rebin(float(a)'
fori =0, narg-1 do begin
command = command + string(’, arg',i,format="(a,i0)")
endfor
command = command + '))’
junk = execute(command)
return, result
end

| imagine there are limits placed on this technique by the maximum
number of arguments to an IDL procedure, or the maximum length of a
string EXECUTE can handle.

Mark Fardal
University of Victoria

Subject: Re: rebin question
Posted by Mark Hadfield on Mon, 25 Mar 2002 22:07:38 GMT

View Forum Message <> Reply to Message

"Mark Fardal" <fardal@coral.phys.uvic.ca> wrote in message
news:yjlzoOxta36.fsf@coral.phys.uvic.ca...
> hradilv.nospam@yahoo.com (Vince) writes:

Page 19 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1237
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29887#msg_29887
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29887
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1027
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29877#msg_29877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29877
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>> |s it possible to define a function or procedure in IDL that can take
>> an arbitrary number of arguments...

Sure. Something like this:

function my_rebin, a, $
arg0, argl, arg2, arg3, arg4, arg5, arg6, arg7, arg8, arg9
;continue to heart's content

narg = n_params()-1
command = result = round(rebin(float(a)'
for i =0, narg-1 do begin
command = command + string(’, arg',i,format="(a,i0)")
endfor
command = command + '))’
junk = execute(command)
return, result
end

| imagine there are limits placed on this technique by the maximum
number of arguments to an IDL procedure, or the maximum length of a
string EXECUTE can handle.

VVVVVVVVVVVVVVVVYVYVVYV

The maximum number of arguments to an IDL procedure is far higher than
any sane programmer would want to use. The maximum length of an
EXECUTE'd string used to be a significant limitation in earlier

versions of IDL (I think it was 64, later 256) butin 5.4 or 5.5 it

was also increased to an effectively infinite value.

When writing wrapper procedures of this sort (which | do quite
often, for various reasons) | prefer to use this form

pro myfoo, p1, p2, ...
case n_params() of
0: foo
1: foo, pl
2: foo, p1, p2

endcase
end

| have gone as far as handling 15 positional parameters, but | don't
think I've ever used more than 4.

Mark Hadfield
m.hadfield@niwa.co.nz Ka puwaha et tai nei
http://katipo.niwa.co.nz/~hadfield = Hoea tatou

Page 20 of 24 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

National Institute for Water and Atmospheric Research (NIWA)

Subject: Re: rebin question
Posted by Jonathan Joseph on Mon, 25 Mar 2002 22:24:27 GMT

View Forum Message <> Reply to Message

Hi JD,

Now that you are no longer conveniently located, | wonder which takes
more of your time: The old going down to your office and getting an
explanation from you directly, or posting to this group and you
constructing a detailed response :) | guess this way everyone gets
the benefit of your words of wisdom.

-Jonathan

JD Smith wrote:
>

> Jonathan Joseph wrote:

>>

>> |t looks nice doesn't it, and | did write a procedure for the simple
>> case of averaging, but it's not as clean cut as you indicate:

>>

>> 1. first one needs to get the type of the incoming image - you don't
>> want to round the result of a floating point type image - that

>> would give you the wrong result.

>> 2. conversion should be done to double precision floating point
>> (not float) otherwise large long integers will lose precision.
>> |oss of precision for large L64 integers will occur even with
>> conversion to double, so they can't be handled properly at all.

Hi JJ,
Since you couldn't walk down the hall to bug me... ;)

This argument is a bit off. When you work in integer precision, all
operations occur as integer arithmetic. Thus, your original rebin
example of (5+5+5+5+4)/5=24/5=4 is an exactly correct integer
calculation. REBIN doesn't "averages the pixels, but then instead of
rounding to the nearest integer, simply take the integer part of

the average"”, it performs arithmetic at the precision of its inputs.

Integer arithmetic truncates, not rounds (try print,4/5). You seem to
want REBIN to switch back and forth between numeric types (in the way
you could do with float() and int()).

VVVVVVVVVYVYVYVYVYVYVYV

A better illustration is:

Page 21 of 24 ---- Cenerated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2764
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7309&goto=29876#msg_29876
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=29876
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

VVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYVYVYVYV

>>

VVVVYVYVVYVYVYV

IDL> print,rebin([[4LL],replicate(5LL,4)],1)
4
IDL> print,total(replicate(10000000000000000000ULL,1))
1.0000000e+19
IDL> print,total(replicate(10000000000000000000ULL,2))
1.5532559¢e+18
IDL> print,rebin(replicate(10000000000000000000ULL,2),1),format=" (G)'
7.766279631452242E+17

Uhh ohh, overflow, but:

IDL> print,rebin(double(replicate(10000000000000000000ULL,2)),1),
format="(G)'
1.000000000000000E+19

OK, that worked, now how about:

IDL> print,rebin(double(replicate(10000000000000000002ULL,2)),1),
format="(E30.22)'
1.0000000000000000000000E+19

Hmm, we lost that 2: insufficient precision rearing it's ugly head.

All of these are also using correct (Long-64) integer arithmethic. The
fact that you can't average together large 64-bit numbers without loss
of precision is not a problem with rebin, but with the number
representation itself. There simply isn't a big enough floating point
type into which to fit this huge integer without loss of precision, and
"rounding"” is not a defined operation on integer types (if it were, we
wouldn't need floats!).

3. need to convert back to the proper type, so your solution
should be wrapped by a fix(..., type=type)

4. instead of a rebin, there is now a rebin, two type conversions
and a round, which will slow things down and use more memory.

Yes, but these are all essential in your scheme. There's no free
lunch. If you'd prefer REBIN to handle all this type conversion itself,
it would be hidden from you, but would still suffer the same
speed-penalty.

Confer the behavior of total(), which automatically upconverts

everything to float() or double(), to avoid overflow (curiously, it

didn't quite succeed in one of the examples above). REBIN could do the
exact same thing, in the exact same way, but | for one am glad it

Pag

e 22 of 24 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
>
>>
>
>
>
>>
>>
>>
>>

VVVVVVVVYVYVYVYVYV

>>

VVVVVVYVVYVYVYV

>>
>>
>>
>>
>>
>>
>>
>>
>>

doesn't. Sometimes | *want* integer arithmetic.
So, it is a hassle.
Think of it as an opportunity.

But yes, it's still not difficult to write a function to handle the

SIMPLE case of averaging for CERTAIN data types. But that does not
help with the problem of writing a more general function that handles
downsampling using median or downsampling using a mean excluding
outliers (pixels with values far from the mean) or downsampling using
your favorite method. Doing this quickly in IDL means doing it

w/o loops, so while conceptually the problem is not difficult, it

does seem somewhat more difficult to do it properly in IDL.

We had a discussion on just this a week or so ago. | have a DLM called
"reduce" which does single-dimension reduction, ala
total(array,dimension), but with your choice of method
(max/min/median/mean/clipped mean/etc.). This could be generalized
quite easily to two different swiss-army tools:

1. A smooth/convol-equivalent (preserve size, apply filter).
2. Arebin-equivalent (reduce size).

In fact, a single tool could probably do all three at once. Of course,
DLM's are a hassle.

Anyone out there thought about this problem before?

| think people have pushed up against this problem thorughout the
history of computing. Usually it's best to spend time reviewing how
computers store and manipulate integers and floats. While it is
certainly possible to write code which handles arbitrary precision, the
tremendous operational overheads of these schemes would have you
screaming for your fixed-width ints and floats. It's a tradeoff between
speed and flexibility, and it's one we have to work around.

JD

Vince wrote:
>
> print, round(rebin(float([5,5,5,5,4]),1))
>
> Hassle?
>
> Maybe you could write a function. Which leads me to a new question:
>

Pag

e 23 of 24 ---- Generated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>>> |s it possible to define a function or procedure in IDL that can take
>>> an arbitrary number of arguments, e.qg.:

>>>

>>> function my_rebin, a, argl, arg2, ...

>>>

>>> return, round(rebin(float(a), argl, arg2, ...))

>>> end

>>>

>>> On Fri, 22 Mar 2002 11:58:41 -0500, Jonathan Joseph <jj21@cornell.edu>
>>> wrote:

>>>

>>>> | figured | would use rebin to downsample an image by averaging the
>>>> pixels in blocks of specified size. What | discovered, was that for
>>>> integer type images, rebin averages the pixels, but then instead of
>>>> rounding to the nearest integer, simply takes the integer part of

>>>> the average. Hence:

>>>>

>>>> print, rebin([5,5,5,5,4], 1)

>>>>

>>>> gives the result of 4, not 5 which is what | would like. | suppose
>>>> this is done for speed - to work around the problem, | need to convert
>>>> to a floating point type, do the rebin, then round, then convert back
>>>> to the proper integer type - a hassle.

>>>>

>>>> But, | would really like a more generic way of doing downsampling
>>>> of this sort, without the high overhead of a loop. Apart from

>>>> taking the mean of a block of pixels, | would also like the option
>>>> of downsampling using the median of a block of pixels, or using the
>>>> mean of a block of pixels disregarding the farthest outlier (or

>>>> n outliers).

>>>>

>>>> Has anyone written IDL code to do downsampling in a more generalized
>>>> way than rebin, or have any clever ideas about how to do it quickly?
>>>>

>>>> Thanks

Page 24 of 24 ---- Cenerated from conp. |l ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

