Subject: Re: FFT transforms for images

Posted by davidf on Tue, 31 Mar 1998 08:00:00 GMT

View Forum Message <> Reply to Message

Michael A. Wirth (Michael.Wirth@cse.rmit.edu.au) writes:

- > I'd like to do some processing using a FFT transform. Basically all I
- > want to do is calculate the FFT
- > of an image, histogram equalize the power spectrum and then inverse the
- > FFT, producing what is in
- > effect an attentuated version of my image. I assume the built-in FFT
- > routine in 1D... does anybody have
- > any suggestions short of writing a 2D FFT.

I've found from painful personal experience that it is usually safer to read the documentation than to make an assumption about how IDL does or does not work. :-)

In this case, although the FFT documentation inexplicably does not say *specifically* that it works with 2D arrays, it does say that the output array "has the same dimensions as the input array." I take this to mean that it is safe to process images with the FFT function. In fact, you can find information on my web page about how to create frequency filters and image power spectrums using the FFT function.

\sim	1_	_	_		
ι,	n	е	e	rs	_

David

David Fanning, Ph.D.

Fanning Software Consulting E-Mail: davidf@dfanning.com

Phone: 970-221-0438

Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: FFT transforms for images

Posted by Michael A. Wirth on Wed, 01 Apr 1998 08:00:00 GMT

View Forum Message <> Reply to Message

Hi,

I'd like to do some processing using a FFT transform. Basically all I want to do is calculate the FFT of an image, histogram equalize the power spectrum and then inverse the

FFT, producing what is in effect an attentuated version of my image. I assume the built-in FFT routine in 1D... does anybody have any suggestions short of writing a 2D FFT.

thanks,		
Michael		

Michael A. Wirth, M.Sc.(CompSci) B.Sc.(Hons) Biomedical Engineering Group Centre for High Performance Computer Systems Dept. of Computer Systems Engineering **RMIT University** Melbourne 3001, Victoria, Australia +61-3-9660-5340 [fax] s9601460@minyos.its.rmit.edu.au +61-3-9660-5361 [ph]

The difference between participation and commitment is illustrated at breakfast. The chicken participates. The pig is committed.