
Subject: Re: Global variables and command line
Posted by J.D. Smith on Fri, 17 Apr 1998 07:00:00 GMT
View Forum Message <> Reply to Message

David Fanning wrote:
>
> Daniel SAGE (daniel.sage@epfl.ch) writes:
>
>> I would like use the variables created in the input command line inside
>> the procedures/functions. But in my application where I automatically
>> generate IDL code, I can't use the common mechanism or passing by
>> parameters.
>
>> How is it possible to make V2 visible inside the test procedure when I
>> can't pass the parameters with the run procedure ?
>
> Well, at the risk of being too obvious here, I would suggest
> putting V2 *in* the common block. :-)
>
>> IDL> common var, v1
>
> to IDL> common var, v1, v2
>
> Cheers,
>
> David
>
> ---
> David Fanning, Ph.D.
> Fanning Software Consulting
> E-Mail: davidf@dfanning.com
> Phone: 970-221-0438
> Coyote's Guide to IDL Programming: http://www.dfanning.com/

At the risk of being too arcane here, I think Daniel's point is quite a
valid one, and his problem less easily solved than it might at first
glance seem. Sometimes, one wants to access variables from the $MAIN$
level in a routine, and sometimes one wants to put variables created
inside a routine into $MAIN$. You might wonder what circumstance could
exist that would require this functionality. I would simply then direct
you to RSI's own Insight, in which after getting in you have the option
of "Select Data to Import"..."IDL Variables"... with a list of $MAIN$
level variables displayed. Now clearly the folks at RSI have convenient
access to the names and data locations of the $MAIN$ level variables,
and I think they should give us mere ordinary users that access also.
As phrased so judiciously in the Reference Guide under the Help
procedure:

Page 1 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1615
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7562&goto=11566#msg_11566
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11566
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 The OUTPUT keyword is primarily for use in capturing HELP
output in order to display it someplace else, such as in a text widget.
This keyword is not intended to be used in obtaining programmatic
information about the IDL session, and is formatted to be human
readable. Research Systems reserves the right to change the format and
content of this text at any time, without warning. If you find yourself
using OUTPUT for a non-display purpose, you should consider submitting
an enhancement request for a function that will provide the information
you require in a safe form.

I am henceforth considering submitting an enhancement request for a
function that will provide the names and data locations (e.g. through
pointers) of $MAIN$ level variables inside routines, and the ability to
create $MAIN$ level variables from within routines, in a safe form.

By the by, for creating $MAIN$ level variables, I used to use this
mechanism:

Have a common block which contains information on new variables
(including their names) created by a program for export into the $MAIN$
level. Have a $MAIN$ level routine as the only interface into the
program, and have it call that program. After the program exits, the
remainder of the $MAIN$ level routine simply looks in the common block,
and creates any exported variables in $MAIN$ (or, e.g just creates new
$MAIN$ level pointers to the heap data). This used to work fine.
However, with the advent of the non-blocking widget interface, it
doesn't work in conjunction with an active command line (the $MAIN$
level program runs through immediately and exits without creating
anything).

Of course, you can always hack something, so my present solution for
non-blocking applications is to use a little procedure which sets a
pointer into a common block, where it can be retrieved from within the
program.

E.g. I might say

mark, thisPointer

and have the data *thisPointer available immediately in the program.
Indeed, you could take this idea further and have a single $MAIN$ level
"import" routine which looks in the relevant common block for any
exported pointers, which have their *names* recorded also in the common
block, and executes them into $MAIN$ with the same names. But this
requires the user to explicitly run the import routine, which not
elegant.

Page 2 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

As an example, suppose I have some image in a file, call it A. In a
fancy widget program, I load A from disk and edit that image. When I
exit the program, it would be ideal if A (or a pointer to the heap data
which is A) could be created in the $MAIN$ level (as A) if I so choose,
for my further analysis and editing. Currently, I would have to run my
$MAIN$ level import routine to accomplish this.

Perhaps RSI is trying to protect us from ourselves here, realizing that
with the problems people have with variable locality already, breaking
it slightly might serve to confuse even more. But they really shouldn't
underestimate our ability to harness and control whatever new power
comes our way. And besides, if they get to do it, then so should we.

Alright, the rant is over.

JD

--
 J.D. Smith |*| WORK: (607) 255-5842
 Cornell University Dept. of Astronomy |*| (607) 255-4083
 206 Space Sciences Bldg. |*| FAX: (607) 255-5875
 Ithaca, NY 14853 |*|

Subject: Re: Global variables and command line
Posted by Martin Schultz on Fri, 17 Apr 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Daniel SAGE wrote:
>
> Hello,
>
> I would like use the variables created in the input command line inside
> the procedures/functions. But in my application where I automatically
> generate IDL code, I can't use the common mechanism or passing by
> parameters.
>
> pro run
> resolve_routine, "test"
> call_procedure, "test"
> end
>
> pro test
> common var
> print, v1
> print, v2
> end

Page 3 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2283
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7562&goto=11568#msg_11568
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11568
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

>
> IDL> common var, v1
> IDL> v1=111
> IDL> v2=222
> % Compiled module: RUN.
> % Compiled module: TEST.
> IDL> run
> % Procedure was compiled while active: RUN. Returning.
> % Compiled module: TEST.
> 111
> % PRINT: Variable is undefined: V2.
> % Execution halted at: TEST 10 HD:Desktop Folder:test.pro
>
> % $MAIN$
>
> How is it possible to make V2 visible inside the test procedure when I
> can't pass the parameters with the run procedure ?
>
> Thanks
>
Your problem is that you define your common block only with v1 - and
once it is defined, you can't change it!!

The above example will work if you type common var,v1,v2 on the command
line. However, a better approach would probably be to call EXECUTE (or
CALL_PROCEDURE, CALL_FUNCTION) to "execute" your procedure or function
that you generate automatically. There should always be some way of
parameter passing. Even if you don't know how many variables you will
need in advance neither their name, you could still construct a
structure and pass that into the function/procedure. I have a CHKSTRU
function in my library (html below) which you can use to see if a
certain structure tag is defined.

Hope this helps,
Martin

--
 -- -------
Dr. Martin Schultz
Department for Earth&Planetary Sciences, Harvard University
186 Pierce Hall, 29 Oxford St., Cambridge, MA-02138, USA

phone: (617)-496-8318
fax : (617)-495-4551

e-mail: mgs@io.harvard.edu
IDL-homepage: http://www-as.harvard.edu/people/staff/mgs/idl/
 -- -------

Page 4 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: Global variables and command line
Posted by davidf on Fri, 17 Apr 1998 07:00:00 GMT
View Forum Message <> Reply to Message

Daniel SAGE (daniel.sage@epfl.ch) writes:

> I would like use the variables created in the input command line inside
> the procedures/functions. But in my application where I automatically
> generate IDL code, I can't use the common mechanism or passing by
> parameters.

> How is it possible to make V2 visible inside the test procedure when I
> can't pass the parameters with the run procedure ?

Well, at the risk of being too obvious here, I would suggest
putting V2 *in* the common block. :-)

> IDL> common var, v1

to IDL> common var, v1, v2

Cheers,

David

David Fanning, Ph.D.
Fanning Software Consulting
E-Mail: davidf@dfanning.com
Phone: 970-221-0438
Coyote's Guide to IDL Programming: http://www.dfanning.com/

Subject: Re: Global variables and command line
Posted by steinhh on Tue, 21 Apr 1998 07:00:00 GMT
View Forum Message <> Reply to Message

J.D.Smith wrote:

[..snip..]

> At the risk of being too arcane here, I think Daniel's point is quite a
> valid one, and his problem less easily solved than it might at first
> glance seem. Sometimes, one wants to access variables from the $MAIN$
> level in a routine, and sometimes one wants to put variables created
> inside a routine into $MAIN$. You might wonder what circumstance could
> exist that would require this functionality. I would simply then direct
> you to RSI's own Insight, in which after getting in you have the option

Page 5 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1688
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7562&goto=11573#msg_11573
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11573
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7562&goto=11547#msg_11547
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11547
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> of "Select Data to Import"..."IDL Variables"... with a list of $MAIN$
> level variables displayed. Now clearly the folks at RSI have convenient
> access to the names and data locations of the $MAIN$ level variables,
> and I think they should give us mere ordinary users that access also.

[..snip..]

> I am henceforth considering submitting an enhancement request for a
> function that will provide the names and data locations (e.g. through
> pointers) of $MAIN$ level variables inside routines, and the ability to
> create $MAIN$ level variables from within routines, in a safe form.

[..snip..]

> Perhaps RSI is trying to protect us from ourselves here, realizing that
> with the problems people have with variable locality already, breaking
> it slightly might serve to confuse even more. But they really shouldn't
> underestimate our ability to harness and control whatever new power
> comes our way. And besides, if they get to do it, then so should we.

I agree.

In an attempt to nominate myself for the 'IDL Hacker of the year'
award :-) I dug into something that I'd seen while programming RPC
calls to IDL ... and ended up wasting a days work on this thing that
doesn't seem to work, even though I think it *should* work;

Below is a set of C routines that need to be compiled and linked into
shareable libraries (and remember to include the "libidl" shareable
library in the linking... on my alpha that's done by adding e.g.,
"-L$IDL_DIR/bin/bin.alpha -lidl" to the linker statement). The
easiest way to find the (other) correct compile/link flags is
to modify the $IDL_DIR/external/sharelib/Makefile to include your
file.

The getmain() function is added as a System Routine (very neat - at
least I learned *this* from my little exercise!), but it doesn't
work as expected:

IDL> print,CALL_EXTERNAL('gmain.so','addmain') ;; Install routine
 1
IDL> print,getmain('ADF')
% GETMAIN: Couldn't find variable ; As expected
% Execution halted at: $MAIN$
IDL> adf=1
IDL> print,getmain('ADF')
Main name ADF, at 140033a58
Main variable type/flag: 2 0

Page 6 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Copying:
Returning: 2 2
 1 ; So far, so good...
IDL> .r
- pro test
- print,getmain('ADF')
- end
% Compiled module: TEST.
IDL> test
Main name ADF, at 140033c98 ; <- address is wrong, but not NULL!
Main variable type/flag: 0 0
Copying:
Returning: 0 2
% PRINT: Variable is undefined: <UNDEFINED>.
% Execution halted at: TEST 2 /dev/tty
% $MAIN$

So, does anyone know what's going wrong here...? Does it behave like
this for all platforms...?

Regards,
Stein Vidar

C source follows (void for non-nerds.. :-)
 -- --gmain.c
#include <stdio.h>
#include "export.h"
#include <strings.h>

/*
 Initialize with:

 print,CALL_EXTERNAL('gmain.so','addmain')

 then, you *should* be able to get the value of a non-dynamic
 main-level variable with:

 print,getmain('<VARNAME>')

 Alas, this only works from the $MAIN$ scope - which is a bit
 silly....

 */

#define NULL_VPTR ((IDL_VPTR) NULL)

IDL_VPTR getmain(int argc, IDL_VPTR argv[])
{

Page 7 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 IDL_VPTR main_variable;
 IDL_VPTR retv;
 IDL_VPTR main_name;

 retv = IDL_Gettmp();

 main_name = argv[0];

 IDL_ENSURE_STRING(main_name);
 IDL_ENSURE_SCALAR(main_name);

 main_variable = IDL_GetVarAddr(main_name->value.str.s);

 if (main_variable == NULL_VPTR) {
 IDL_Message(IDL_M_NAMED_GENERIC,IDL_MSG_LONGJMP,"Couldn't find variable");
 }

 printf("Main name %s, at %lx\n\r",main_name->value.str.s,main_variable);
 printf("Main variable type/flag: %d %d\n\r",(int)main_variable->type,
	 (int)main_variable->flags);

 if (! (main_variable->flags & IDL_V_DYNAMIC)) {
 fprintf(stderr,"Copying: \n\r");
 bcopy(main_variable,retv,sizeof(*retv));
 retv->flags |= IDL_V_TEMP;
 }

 fprintf(stderr,"Returning: %d %d\n\r",retv->type,retv->flags);

 return retv;
}

IDL_SYSFUN_DEF main_def[] = { {(IDL_FUN_RET) getmain, "GETMAIN", 1, 1} };

IDL_LONG addmain(int argc,char *argv[])
{
 int tmp;

 /* I haven't the faintest idea whether or not this statement is required,
 or whether it's completely out of line... */

 tmp=IDL_Init(0,&argc,argv);

 /* This one was neat, though: */

 IDL_AddSystemRoutine(main_def,IDL_TRUE,1); /* Just add getmain... */

Page 8 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 return tmp;
}
 -- ----------

Page 9 of 9 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

