
Subject: IDL Object for creating a Singleton
Posted by Phillip & Suzanne on Mon, 22 Jun 1998 07:00:00 GMT
View Forum Message <> Reply to Message

I've been doing a fair amount of reading on OO design and methodology. One of
the books I've had pointed out to me was 'Design Patterns', which deals with
OO algorithm design quite nicely. One of the patterns the authors describe is
a Singleton -- A class for which only one instance exists. If the sole
instance exists, the constructor function (object's init function in IDL) will
return a reference to the existing object. If none exists, a new object is
created and returned.

This structure is particularly useful when there is no reason to have multiple
objects around. I am trying to create a user preferences object that fits
this criteria very nicely. I'd like to be able to store user preferences for
screen size in an object. If that object exists, other screens can size
themselves appropriately. The book gives sample C++ code that relies on class
variables and class methods (i.e., not associated with a specific instance of
the object, but with the object itself). IDL doesn't seem to have any way to
do something similar. Does anyone know of a way to do this?

My first attempt uses a common block called preferencesclassvars to store an
object reference. This common block is called from a function that, while not
part of the object, is stored in the same file. If the reference contained in
the common block is not an object reference, then I know the object hasn't
been initialized, and I set it to a new instance of the object. Otherwise, I
return the object reference from the common block.

Is there a better way to achieve the techniques of class variables and class methods?

Thanks for your thoughts.

Phillip David
IDL Tool Developer
XonTech, Inc.

Subject: Re: IDL Object for creating a Singleton
Posted by mallors on Tue, 23 Jun 1998 07:00:00 GMT
View Forum Message <> Reply to Message

In article <358E06D3.AE9D606F@earthling.net>,
	Phillip & Suzanne David <pdavid@earthling.net> writes:
> I've been doing a fair amount of reading on OO design and methodology. One of
> the books I've had pointed out to me was 'Design Patterns', which deals with
> OO algorithm design quite nicely. One of the patterns the authors describe is
> a Singleton -- A class for which only one instance exists. If the sole
> instance exists, the constructor function (object's init function in IDL) will

Page 1 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2625
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7814&goto=11985#msg_11985
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=11985
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2365
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=7814&goto=12116#msg_12116
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12116
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> return a reference to the existing object. If none exists, a new object is
> created and returned.
>
> This structure is particularly useful when there is no reason to have multiple
> objects around. I am trying to create a user preferences object that fits
> this criteria very nicely. I'd like to be able to store user preferences for
> screen size in an object. If that object exists, other screens can size
> themselves appropriately. The book gives sample C++ code that relies on class
> variables and class methods (i.e., not associated with a specific instance of
> the object, but with the object itself). IDL doesn't seem to have any way to
> do something similar. Does anyone know of a way to do this?
>
> My first attempt uses a common block called preferencesclassvars to store an
> object reference. This common block is called from a function that, while not
> part of the object, is stored in the same file. If the reference contained in
> the common block is not an object reference, then I know the object hasn't
> been initialized, and I set it to a new instance of the object. Otherwise, I
> return the object reference from the common block.
>

The implementation of the seemingly simple Singleton
pattern is not so easy in IDL since there is no such
thing as a C static variable, as J.D. has pointed out.
To implement the Singleton in IDL, one requires global
access to the Singleton object reference. Common blocks are
one obvious solution, but here is another bare-bones
implementation of the Singleton that does not use a
common block. Instead, it stores the object reference in
a read-only system variable. The system variable acts as
a "static" reference.

; Initalize the singleton
;
FUNCTION singleton::init

 ; Store the object reference
 ;
 READ_ONLY = 1
 DEFSYSV, '!objSingleton', self, READ_ONLY

 RETURN, 1

END ; init

; Implementation of a Singleton object
;

Page 2 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

PRO singleton__define

 obj = { singleton, $

 ; Some instance data required
 ;
 instanceData: 0 $
 }

END ; define

FUNCTION SINGLETON

 DEFSYSV, '!objSingleton', EXISTS = exists
 IF (exists EQ 0) THEN BEGIN

 o = OBJ_NEW ('singleton')

 ENDIF ELSE BEGIN

 IF (OBJ_VALID (!objSingleton)) THEN BEGIN

 o = !objSingleton

 ENDIF ELSE BEGIN

 o = OBJ_NEW ('singleton')

 ENDELSE

 ENDELSE

 RETURN, o

END

This code has some limitations:

 1. You have to create the singleton with

 mySingleton = SINGLETON ()

 instead of the usual OBJ_NEW ()

Page 3 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 2. If you want several Singletons, the SINGLETON function
 will have to be modified to use a unique system variable
 for each. Even instantiating, destroying, then
 instantiating again will not work as it is now.

If you are just starting out using the Gamma book with IDL,
don't get discouraged by the difficulty implementing the
Singleton in IDL. I have implemented several other patterns
from that book in IDL with good results. The implementations
shown in C in that book are just that - implementations. The
focus of the book in on *design techniques*, not implementations.
All you need is to reproduce the functionality of the design
pattern, and this can be done in IDL for many of the patterns.
Concentrate on object delegation, which is easily handled in
IDL.

For anyone unfamiliar with the Gamma book:

 Design Patterns, Elements of Reusable Object-Oriented Software
 Eirch Gamma, et al.
 Addison-Wesley
 ISBN 0-201-63361-2

By the way, I have not used the DEFSYSV function too much in
any code yet, but it seems like an ideal place to store a
structure of read-only widget IDs. You then have access to
all widget IDs anywhere in your code, and the read-only nature
makes it safe, unlike the COMMON block.

> This structure is particularly useful when there is no reason to have multiple
> objects around. I am trying to create a user preferences object that fits
> this criteria very nicely. I'd like to be able to store user preferences for

I have written a Preferences object that manipulates user preferences. It
is available from my web page

 http://cspar.uah.edu/~mallozzir/idl/idl.html

Regards,

Page 4 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

-bob

--
Robert S. Mallozzi
http://cspar.uah.edu/~mallozzir/

Page 5 of 5 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

