
Subject: Memory Mapped Files (update) (long)
Posted by korpela on Thu, 16 Jul 1998 07:00:00 GMT
View Forum Message <> Reply to Message

An update to the VARRAY software, which provides better memory mapped file
support to IDL, is available at http://sag-www.ssl.berkeley.edu/~korpela/mmap/

VARRAY allows IDL under UNIX systems to access files larger than
available physical or standard virtual memory as standard IDL variables.
As an added benefit it provides shared memory and a simple interprocess
communication method for IDL programs.

This release (1.03) fixes one bug, and adds support for compilation under
Solaris. (Thanks to Angelos Vourlidas at the Naval Research Lab for providing
both of these enhancements.)

--
Eric

A description of VARRAY usage follows.

 __ _____

 MEMORY MAPPED FILES FOR IDL
 __ _____

Introduction

 Shortly after beginning to use IDL, I became annoyed with a couple
 features of IDL. First, when working with many large images, I would
 often run out of virtual memory, despite having 127 MB available.
 Second, the ASSOC feature, which associates a file with an IDL array,
 does not work as I had hoped. Rather than easily allowing access to
 any element of any array contained in a file, it requires that
 elements be copied into temporary arrays, and then written back to the
 file array. Eventually I got tired of it both of these problems and
 decided to do something about it. I sat down and wrote _VARRAY_. It
 has the advantages of solving both problems, and a couple I never
 thought of.

VARRAY: Specifications

 VARRAY is in external system routine in IDL. It is written in C and
 has been tested on IDL 4.0.1 and 5.0 under SunOS 4.1.3. It should,
 however, work with minor modifications under most UNIX systems that
 support the _mmap()_ and _ftruncate()_ functions. Making it work under
 Win32 is more of an effort, but should be possible. I have no idea
 whether there is a _mmap()_ equivalent under VMS.

Page 1 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=397
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8042&goto=12377#msg_12377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12377
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Compiling VARRAY

 VARRAY is shipped with a Makefile that may require some
 modifications depending upon the system used. Macros are provided for
 SunOS systems with GCC and ACC compilers (GCC is recommended),
 Solaris, and Linux systems. (The code has never been compiled or
 tested on a Linux system. Modifications are likely to be required.)
 Once the Makefile has been modified, _ VARRAY_ is compiled with the
 command:

 make varray.so

VARRAY: Usage

 The shared object file "varray.so" needs to be linked into the running
 IDL process using the LINKIMAGE routine. I place the following command
 in my IDL_STARTUP routine:

 LINKIMAGE,'VARRAY','~/idl/mmap/varray.so',1,'varray',min_arg s=1,max_args=10,/ke
ywords

 Once the shared object is loaded, the _VARRAY_ function becomes
 available. The syntax of the _VARRAY_ function is:

 array=VARRAY([filename],element,[dim1,dim2,dim3,...dim8],[/w ritable],[/status])

 where
 * "filename" is the name of the file you wish to associate with the
 array. If the filename is omitted, a writable temporary file with
 a unique name is created in the /tmp directory.

 * "element" is a variable type of each element of the array.
 Currently only numeric scalar types are allowed.

 * "dim1..dim8" are the dimensions of the array. If the file is
 writable and the dimensions are larger than the current file size,
 the file is _ftruncate()_d to the appropriate size.

 * The "/writable" keyword specified that the file is writable and
 that the changes to array elements are shared and written to disk.

 * The "/status" keyword causes _VARRAY_ to print the number of open
 files to the standard output. Currently _VARRAY_ supports 32
 simultaneously open files.

 For example, the command

Page 2 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 A=VARRAY("test.dat",byte(0),512,512,/writable)

 opens a file named "test.dat", creating it if it doesn't exist, and
 assigns it to a 512 by 512 byte array. The elements of this array can
 be accessed and written to. For example:

 A(*,*)=byte(255*randomu(seed,512,512))

 will write random values into the file. When the variable is deleted
 (i.e DELVAR,A) or reallocated (i.e. A=SOMETHING) all changes will be
 updated on disk.

Sparse Files

 VARRAY supports sparse files. In a sparse file, only those portions
 of the file that contain non-zero data are written to disk. Try the
 following in IDL:

 a=fltarr(8192,8192)

 Chances are, you just saw the message (unless you had 256 MB free):

 % Unable to allocate memory: to make array.
 Not enough memory
 % Execution halted at: $MAIN$

 Now, with _VARRAY_ loaded try the following:

 a=varray("test.dat",float(0),8192,8192,/writable)
 help,a

 You should see...

 A FLOAT = Array(8192, 8192)

 Going to UNIX and doing "ls -l", we see that the file is 268435456
 bytes long and takes up 24k of disk space. Now convince yourself that
 the array is real by doing

 a(4096,4096)=!pi
 print,a(4096,4096)

 You'd better see 3.14159. Checking the file size again you'll see that
 it's still 268435456 bytes long, but now it takes up 40k of disk
 space. Check that things are repeatable by deleting the variable, and
 reloading it.

 delvar,a

Page 3 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 a=varray("test.dat",float(0),8192,8192,/writable)
 print,a(4096,4096)

 You should still see 3.14159. If you want to sit around for a long
 time you can even "print,total(a)".

Shared Memory

 A happy circumstance of _VARRAY_ is that it allows memory to be shared
 between IDL processes. If you map a file with the /writable keyword,
 the changes will be shared with any other process that maps the file.
 As an example, start two idl processes and link "varray.so" to them.
 In each, enter:

 a=varray("shm.dat",fix(0),100,/writable)

 Now, in one enter "a(0)=1" then in the other, enter "print,a(0)."
 Presto, interprocess communication. Of course there's no protection
 for simultaneous access, so for each variable I would recommend that
 one process read and the other write.

Bugs and Stuff-To-Do

 There's always another bug or feature. Here are a few you should note:
 * Arrays that are not mapped as writable use up swap space, as the
 system ensures that enough swap space is available to support
 changes to the array values. Thus, in order to save swap space,
 files must be mapped "/writable."

 * In the above shared memory example, if the array in the reader
 process is not mapped "/writable" and is written to, the array
 looses it's mapping to the file, and the interprocess connection
 disappears.

 * A planned "OFFSET" keyword, which specifies an offset in the file
 for the mapping to begin, has not yet been implemented. Therefore,
 only headerless files are supported for now.

Release History
 * Version 1.00 First release
 * Version 1.01 Fixed several function definitions
 * Version 1.02 Background syncronization
 * Version 1.03 Bug Fix, removed third parameter from the _munmap()_
 call. Added Solaris section to Makefile.

Acknowledgements

 My thanks to Angelos Vourlidas at the Naval Research Lab, for

Page 4 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 providing the Solaris binary and for pointing out the bug in the
 munmap() call.

--
Eric Korpela | An object at rest can never be
korpela@ssl.berkeley.edu | stopped.
Click for home page.

Subject: Re: Memory Mapped Files
Posted by Randall Skelton on Thu, 13 Jun 2002 23:40:06 GMT
View Forum Message <> Reply to Message

I have to say this is the neatest thing I've seen in a while-- I had no
idea that this was even possible!

My best advice for windows would be to make it look more like unix...

http://www.research.att.com/sw/tools/uwin/
http://www.cygwin.com/

For what it is worth, varray it can be compiled and run on the MacOS X
beta :)

cc -O2 -Wall -fPIC -I/usr/local/rsi/idl/external -c -o varray.o varray.c
cc -shared -flat_namespace -undefined suppress -bundle -o varray.so varray.o

Sometimes it is nice to have cake and eat it too...

Cheers,
Randall

On 13 Jun 2002, Ben wrote:

> I have a problem where I'm loading data sets large enough that I'm
> running out of memory. I can increase the size of my swap file but
> sometimes that works and sometimes IDL crashes when it tries to
> allocate from the swap. Has anyone seen a windows version of something
> similar to Eric Korpella's
> <http://sag-www.ssl.berkeley.edu/~korpela/mmap/>
> VARRAY program? At first I thought the ASSOC command would work but I
> can't treat my 2 dimensional data set exactly as if it were a normal
> variable.
> I'm running win2k.
>
> Any help or insight would be greatly appreciated.

Page 5 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=3691
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8042&goto=31109#msg_31109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31109
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

> Thanks,
> Ben Hilldore
> Hope College Nuclear Research Group
>

Subject: Re: Memory Mapped Files
Posted by R.Bauer on Fri, 14 Jun 2002 13:23:12 GMT
View Forum Message <> Reply to Message

Randall Skelton wrote:
>
> I have to say this is the neatest thing I've seen in a while-- I had no
> idea that this was even possible!

We too!

Reimar
--
Reimar Bauer

Institut fuer Stratosphaerische Chemie (ICG-I)
Forschungszentrum Juelich
email: R.Bauer@fz-juelich.de
 -- -------
 a IDL library at ForschungsZentrum Juelich
 http://www.fz-juelich.de/icg/icg1/idl_icglib/idl_lib_intro.h tml
 == =======

Subject: Re: Memory Mapped Files
Posted by crono15m on Mon, 17 Jun 2002 17:03:56 GMT
View Forum Message <> Reply to Message

Hi again.

I'm glad I could show you something interesting. :)

Randall, your advice about making windows look more like unix is helpful and I
may end up having to do that eventually if I can't find another way around.
The problem with that is that I have to distribute my analysis package to
several computers with several different users. Under those circumstances it
isn't very practical to be running a console in the background.

I'll keep looking for a better way. In the mean time at least I have a solution.

Page 6 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2825
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8042&goto=31104#msg_31104
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31104
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=4347
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8042&goto=31092#msg_31092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=31092
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Have a good one,

Ben Hilldore
Hope College Nuclear Research Group

Page 7 of 7 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

