Subject: Re: [Object IDL] self-documenting objects ...
Posted by David Foster on Fri, 31 Jul 1998 07:00:00 GMT

View Forum Message <> Reply to Message

dEdmundson@Bigfoot.com wrote:

>
| have created a number of potentially useful objects that | wish
to share with others. Of course | have documented the code and
written a nice comment header but it would be nice to access help
online. Thus, | have adopted the convention of coding a "help"
method procedure for every object | write, viz.

myobj -> help

>
>

>

>

>

>

> myobj = obj_new('myobject’)
>

>

> Rather than having to duplicate documentation in this method

> *and* the code header, can | not simply display the source

> header to the user? This approach has the benefit of encouraging
> the IDL programmer to write well-documented code headers.

> Comments on this convention?

<snip>

| don't see any reason why you couldn't extract the header
from the source file and display it. Here is another possiblility...

| have been lamblasted (sp?) for this in the past, but | have
decided to write separate .doc documentation files for my routines.
| have written a widget program called LHELP that allows you to
view these files, perform text searches within the current file, and
to view .pro files as well. | have found it to be quite useful

and convenient.

If your object-method approach doesn't pan out you can download
LHELP from: ftp://bial8.ucsd.edu pub/software/idl/software .

Good luck!

Dave

David S. Foster Univ. of California, San Diego

Programmer/Analyst Brain Image Analysis Laboratory

foster@biall.ucsd.edu Department of Psychiatry

(619) 622-5892 8950 Via La Jolla Drive, Suite 2240
La Jolla, CA 92037

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1324
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8050&goto=12385#msg_12385
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12385
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Subject: Re: [Object IDL] self-documenting objects ...
Posted by steinhh on Fri, 31 Jul 1998 07:00:00 GMT

View Forum Message <> Reply to Message

Darran wrote:

>
>
>
>
>

Rather than having to duplicate documentation in this method
and the code header, can | not simply display the source

header to the user? This approach has the benefit of encouraging
the IDL programmer to write well-documented code headers.
Comments on this convention?

It's a very good convention!

>
>
>
>

Question: how can | locate the source file assuming that
| know the file name (myobject__define.pro) and that it
is located in the IDL_PATH? (IDL's filepath procedure
gives incorrect info for user written routines.)

Hmm. You needn't "locate” the file, just ask IDL where it

found it: The HELP,CALLS=CALLS keyword will give you the
information for free. It can, however, be a little bit awkward

to extract info from the returned string array, so I've

produced a function called GET_CALLDETAILS() which returns a
structure with the info. To get info inside a routine about
who/what/where called you:

info = get_calldetails() ;; An implicit depth = 2 argument here.

The routine is appended below (with a code header :-)

The reason | wrote this routine was that I've seen the need to
have something like "inline text constants" introduced to IDL.
In most shells, you can do e.g.,

unix> myprog <<STOP

This text will be put into the stdin of myprog.
This one, too...

STOP

| never got around to doing this, however, until this morning
when you asked this question | thought | should give it a try.
Lo and behold, a new function has been born: INLINE_TEXT()
Use:

txt = inline_text(';STOP")

:This text will be returned by the INLINE_TEXT function.
;This one, too.
;STOP

Page 2 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=605
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8050&goto=12388#msg_12388
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12388
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

Those lines (in a program that's saved in a file - not compiled
directly with the .run command) correspond to:

txt = [';This text will be returned by the INLINE_TEXT function.",$
" This one, too.",$
"STOP']

In my eyes, the new solution is a *lot* better, from an
esthetic point of view. The default MARKER argument to
INLINE_TEXT() is ';-', which is the standard "end-of-doc"
marker for library routines.

The INLINE_TEXT() function follows, but with a slight twist:

An extra function called INLINE_TEXT_HELP() is put at the head
of the file, so the documentation header for INLINE_TEXT is
available at the beginning of the file as well as through the
function INLINE_TEXT_HELP(): Try

PRINT,INLINE_TEXT_HELP(),FORMAT='(A)'
Ah - a nice start on my day, at least...

(Note that the "forward_function inline_text" statement
in inline_text_help is necessary only for *this* particular
"help"” function)

Stein Vidar
INliNe_teXt.Pro----------mmmm oo

FUNCTION inline_text_help
forward_function inline_text & return,inline_text(';-")
+

; Project : SOHO - CDS

: Name - INLINE_TEXT()

; Purpose : Return inline text immediately following call line

; Explanation : Returns verbatim text immediately following the line calling
; INLINE_TEXT, up to and including the line that contains the
; end MARKER.

; Uses GET_CALLDETAILS to find out the file name and the line
; number of the calling line.

; The default MARKER is ';-' (the standard "end of

Page 3 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; documentation" marker in the library routines).

- Use - TEXT = INLINE_TEXT([MARKER])

; Inputs : None required

; Opt. Inputs : MARKER : The text appearing at the *beginning* of the last
: line of inline text.

Outputs : Returns the inline text, or message about failure to read.
Opt. Outputs: None.

Keywords : None.

Calls : GET_CALLDETAILS()

; Common : None.

Restrictions: Needs to find the program source file!
Side effects: None.

Category : General.

Prev. Hist. : None.

Written : S.V.H.Haugan, UiO, 31 July 1998
Modified : Not yet.

; Version : 1,31 July 1998

END

FUNCTION inline_text,marker
;; Default maker ';-'
IF n_params() EQ O THEN marker =";-'
;; Get caller details
info = get_calldetails()

;; Return message instead of inline text in case of trouble

Page 4 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

ON_IOERROR,abort
openr,lun,info.file,/get_lun

tx = strarr(info.lineno)
readf,lun,tx

start = fstat(lun)

nlines =0

tx =

REPEAT BEGIN
readf,lun,tx
nlines = nlines+1

END UNTIL strpos(tx,marker) EQ 0

point_lun,lun,start.cur_ptr

text = strarr(nlines)
readf,lun,text

close,lun
free_lun,lun

return,text

abort:

IF n_elements(lun) EQ 1 THEN BEGIN

close,lun
free_lun,lun
END

return,['Error in reading inline text from file :'+info.file]

END

get_calldetails.pro----------------

+

; Project : SOHO - CDS

Page 5 of 7 ---- Generated from

conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

‘Name :GET_CALLDETAILS()

; Purpose : Return details of calling program (at any stack depth)

; Explanation : The HELP,CALLS=CALLS utility is nice, but it's often a bit
) awkward to extract information. This routine returns the
: information in a more edible form, as a structure:

; {GET_CALLDETAILS_STC,

; TEXT : The full text of CALLS(DEPTH)

; MODULE : The procedure or function name of CALLS(DEPTH)

: FILE : The source file for the procedure

: LINENO : The line number of the calling statement

; DEPTH : The depth used (default 2)

; TOTALDEPTH : The maximum possible depth allowed in this call}

; Depth=0 means *this* program (GET_CALLDETAILS)

; 1 means the caller of GET_CALLDETAILS

; 2 means the caller of the program calling

; GET_CALLDETAILS (DEFAULT)

; 3 means the caller of the caller of the program calling
; GET_CALLDETAILS ... etc

: Use : STC = GET_CALLDETAILS([DEPTH])

; Inputs : None required

Opt. Inputs : DEPTH : See Explanation
Outputs : Returns information structure.
Opt. Outputs: None.

Keywords : None.

Calls : None.

: Common : None.

: Restrictions: None.
. Side effects: None.

; Category : General.

: Prev. Hist. : None.

Page 6 of 7 ---- Generated from conp. | ang.idl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

; Written : S.V.H.Haugan, UiO, 6 May 1998

Modified : Not yet.

; Version : 1,6 May 1998

FUNCTION get_calldetails,depth
IF n_elements(depth) EQ O THEN depth =2
help,calls=calls
IF depth GE n_elements(calls) THEN message,"Depth exceeds call stack”
IF depth LT 0 THEN message,"Do whatever you want! | can't foretell it"
line = calls(depth)

IF strpos(line,'SMAIN$') EQ O THEN $
line = '$SMAINS$ <$MAINS$(0)>'

blank = strpos(line,')

langle = strpos(line,'<")
rangle = strpos(line,>")
Iparen = strpos(line,'(")
rparen = strpos(line,")")

module = strmid(line,0,blank)
file = strmid(line,langle+1,lparen-(langle+1))
lineno = long(strmid(line,lparen+1,rparen-(Iparen+1)))

stc = {get_calldetails_stc,$
text:line,$
module:module,$
file:file,$
lineno:lineno,$
depth:depth,$
totaldepth:n_elements(calls)-1}
return,stc

Page 7 of 7 ---- Generated from conp. |l ang. i dl - pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

