
Subject: Robust curve fitting
Posted by Craig Markwardt on Mon, 03 Aug 1998 07:00:00 GMT
View Forum Message <> Reply to Message

There has been some recent discussion on this newgroup about curve
fitting. Specifically, people wanted a faster system with more
features. I also wanted a curve fitting routine that didn't cause IDL
to crash.

I recently had an opportunity to translate the MINPACK-1 curve-fitting
package into IDL. MINPACK is a minimization package available from
netlib, and has an excellent reputation. I have found that it is much
more robust, able to cope with singular matrices, etc. Since people
have been requesting, I polished it up a little bit, and am making it
available via my IDL web page:

http://astrog.physics.wisc.edu/~craigm/idl/idl.html

In addition to three IDL procedures (MPFIT, MPFITFUN, and MPFITEXPR)
which are extensively documented, I have written a short tutorial page
on how to use them
(http://astrog.physics.wisc.edu/~craigm/idl/fittut.html). You should
download all three routines.

The easiest to use routine, MPFITEXPR, does not even require you to
compile a separate IDL function. You just type the expression you
want, as a string! I have found this indispensable for interactive
analysis.

Benefits:

 * can fit arbitrary expressions from the command line without
 compiling a special IDL function (see MPFITEXPR).

 * you can fix any parameters you wish (see PARINFO keyword).

 * you can place upper and lower limits on parameter values.
 (see PARINFO keyword).

 * you can pass additional keywords to your function in a manner
 similar to the _EXTRA mechanism (see the FUNCTARGS keyword).

 * the function evaluation is a vector operation, so it avoids
 time-consuming FOR loops.

 * it computes the entire covariance matrix (see COVAR keyword)

 * partial derivatives are calculated automatically and numerically,

Page 1 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=1763
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8099&goto=12464#msg_12464
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12464
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 freeing you from the need to compute them analytically yourself.

I get very good performance on my machine! Download them and give a
try. As always, feedback is appreciated.

Craig

--
 -- --------------
Craig B. Markwardt, Ph.D. EMAIL: craigmnet@astrog.physics.wisc.edu
Astrophysics, IDL, Finance, Derivatives | Remove "net" for better response
 -- --------------

Subject: Re: Robust curve fitting
Posted by address on Thu, 06 Aug 1998 07:00:00 GMT
View Forum Message <> Reply to Message

In article <ond8ag5et2.fsf@cow.physics.wisc.edu>,
craigmnet@astrog.physics.wisc.edu wrote:

> Mark Elliott <mark@mail.mmrrcc.upenn.edu> writes:
>>
>> Do you or anyone reading this know if there are similar IDL (or
>> MINPACK) routines which perform Levenberg-Marquardt fitting to COMPLEX
>> functions?
>>
>
> I'm not an expert in the field, I just translated the program!
>
> I can tell you that MPFIT itself does not understand complex
> variables; they have to be either FLOAT or DOUBLE. I am not even sure
> what the least-squares problem means when you talk about complex
> numbers. If you want to minimize the Euclidean distance between data
> and model points on the complex plane, and if your data have
> independent errors in the real and imaginary components, then the
> solution should be easy.
>

Hi,

We routinely fit complex variables by putting the real part in the first
part of an array and the imaginary part after that. We calculate the
function and the derivatives the same way, real part first then the imaginary.
See the added example which we use with a slightly adapted curvefit. You
just consider the imaginary part as another set of data, since -indeed- in
our case the errors are independent. Good luck.

Page 2 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=usrinfo&id=2729
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=rview&th=8099&goto=12674#msg_12674
http://idlcoyote.com/comp.lang.idl-pvwave/index.php?t=post&reply_to=12674
http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 ;*** ****************
;+
; CALLING SEQUENCE:
; FUNCT, f_nr, X,FPAR,FUN,PDER
; INPUTS:
; f_nr = function nr 1: single complex spectral line
; T = VALUES OF INDEPENDENT VARIABLE. (time here)
; FPAR = PARAMETERS OF EQUATION DESCRIBED BELOW.
; X = PARAMETERS (depends on function nr)
; OUTPUTS:
; FUN = VALUE OF FUNCTION AT EACH X(I).
;
; OPTIONAL OUTPUT PARAMETERS:
; DFUN = (N_ELEMENTS(X), npar) ARRAY CONTAINING THE
; PARTIAL DERIVATIVES. DFUN(I,J) = DERIVATIVE
; AT ITH POINT W/RESPECT TO JTH PARAMETER.
; PROCEDURE:
; function nr = 2:
; FUN(0:cut-1) = sum(i) (A1i sin((w0+wi)t) + A2i cos((w0+wi)t)) exp(-bt)
; FUN(cut:*) = sum(i) (A1i cos((w0+wi)t) - A2i sin((w0+wi)t)) exp(-bt)
;
; MODIFICATION HISTORY:
; WRITTEN, DMS, RSI, SEPT, 1982.
; Jan Willem van der Veen, jan 1998
;-
PRO FUNCT, f_nr,T,FPAR,FUN,DFUN

s = N_ELEMENTS(T)
NTERMS = N_ELEMENTS(FPAR)

cut = s/2

type = size(FPAR)
type = type(type(0)+1)
dpar = type eq 5

if dpar then begin
 FUN = dblarr(s)
 IF (N_PARAMS(0) GT 4) THEN DFUN = dblarr(s, nterms)
endif else begin
 FUN = fltarr(s)
 IF (N_PARAMS(0) GT 4) THEN DFUN = fltarr(s, nterms)
endelse

if (f_nr EQ 1) then begin
 A1 = FPAR(0) ; amplitude cos 1
 A2 = FPAR(1) ; amplitude sin 1

Page 3 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

 B = FPAR(2) ; damping
 W = FPAR(3) ; frequency
 T2 = T(0:cut-1)

 BEXP = EXP(-B*T2) ; decay
 FS = SIN(W*T2) ; sin part
 FC = COS(W*T2) ; cos part

 FUN(0:cut-1) = (A1*FS+A2*FC)*BEXP
 FUN(cut:s-1) = (A1*FC-A2*FS)*BEXP

 IF N_PARAMS(0) LE 4 THEN RETURN ; need derivatives

 DFUN(0:cut-1,0) = FS*BEXP ; d FUN / d A11
 DFUN(cut:s-1,0) = FC*BEXP

 DFUN(0:cut-1,1) = FC*BEXP ; d FUN / d A21
 DFUN(cut:s-1,1) =-FS*BEXP

 DFUN(0:cut-1,2) = FUN(0:cut-1)*(-T2)
 DFUN(cut:s-1,2) = FUN(cut:s-1)*(-T2)

 DFUN(0:cut-1,3) = (A1*FC-A2*FS)*T2*BEXP
 DFUN(cut:s-1,3) = (-A1*FS-A2*FC)*T2*BEXP

endif
RETURN
END

--
 \|||/ email: prlkovsky at newsguy dot com
 >|- o|< I was never sure about anything anyway...
-----oo0 U -Ooo---

Page 4 of 4 ---- Generated from comp.lang.idl-pvwave archive

http://idlcoyote.com/comp.lang.idl-pvwave/index.php

